Difference between revisions of "1992 AHSME Problems/Problem 30"

(Created page with "== Problem == Let <math>ABCD</math> be an isosceles trapezoid with bases <math>AB=92</math> and <math>CD=19</math>. Suppose <math>AD=BC=x</math> and a circle with center on <mat...")
 
m (See also)
Line 15: Line 15:
 
{{AHSME box|year=1992|num-b=29|num-a=30}}   
 
{{AHSME box|year=1992|num-b=29|num-a=30}}   
  
[[Category: IntermediateGeometry Problems]]
+
[[Category: Intermediate Geometry Problems]]
 
{{MAA Notice}}
 
{{MAA Notice}}

Revision as of 15:48, 27 September 2014

Problem

Let $ABCD$ be an isosceles trapezoid with bases $AB=92$ and $CD=19$. Suppose $AD=BC=x$ and a circle with center on $\overline{AB}$ is tangent to segments $\overline{AD}$ and $\overline{BC}$. If $m$ is the smallest possible value of $x$, then $m^2$=

$\text{(A) } 1369\quad \text{(B) } 1679\quad \text{(C) } 1748\quad \text{(D) } 2109\quad \text{(E) } 8825$

Solution

$\fbox{B}$

See also

1992 AHSME (ProblemsAnswer KeyResources)
Preceded by
Problem 29
Followed by
Problem 30
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30
All AHSME Problems and Solutions

The problems on this page are copyrighted by the Mathematical Association of America's American Mathematics Competitions. AMC logo.png