Difference between revisions of "1966 AHSME Problems/Problem 6"

Line 1: Line 1:
Answer is C
+
== Problem ==
 +
<math>AB</math> is the diameter of a circle centered at <math>O</math>. <math>C</math> is a point on the circle such that angle <math>BOC</math> is <math>60^\circ</math>. If the diameter of the circle is <math>5</math> inches, the length of chord <math>AC</math>, expressed in inches, is:
 +
 
 +
<math>\text{(A)} \ 3 \qquad \text{(B)} \ \frac {5\sqrt {2}}{2} \qquad \text{(C)} \frac {5\sqrt3}{2} \ \qquad \text{(D)} \ 3\sqrt3 \qquad \text{(E)} \ \text{none of these}</math>
 +
 
 +
== Solution ==
 +
<math>\fbox{C}</math>
 +
 
 +
== See also ==
 +
{{AHSME box|year=1966|num-b=5|num-a=7}} 
 +
 
 +
[[Category:Introductory Geometry Problems]]
 
{{MAA Notice}}
 
{{MAA Notice}}

Revision as of 01:38, 15 September 2014

Problem

$AB$ is the diameter of a circle centered at $O$. $C$ is a point on the circle such that angle $BOC$ is $60^\circ$. If the diameter of the circle is $5$ inches, the length of chord $AC$, expressed in inches, is:

$\text{(A)} \ 3 \qquad \text{(B)} \ \frac {5\sqrt {2}}{2} \qquad \text{(C)} \frac {5\sqrt3}{2} \ \qquad \text{(D)} \ 3\sqrt3 \qquad \text{(E)} \ \text{none of these}$

Solution

$\fbox{C}$

See also

1966 AHSME (ProblemsAnswer KeyResources)
Preceded by
Problem 5
Followed by
Problem 7
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30
All AHSME Problems and Solutions

The problems on this page are copyrighted by the Mathematical Association of America's American Mathematics Competitions. AMC logo.png