Difference between revisions of "2007 USAMO Problems/Problem 1"
5849206328x (talk | contribs) (→Solutions) |
5849206328x (talk | contribs) (→Solutions) |
||
Line 12: | Line 12: | ||
=== Solution 2 === | === Solution 2 === | ||
+ | Let <math>a_1 = n</math>. Since <math>a_k\leq k - 1</math>, we have that | ||
+ | <cmath>a_1 + a_2 + \cdots + a_n\leq n + 1 + 2 + \cdots + n - 1 = \frac{n(n + 1)}{2}.</cmath> | ||
+ | Since <math>a_1 + a_2 + \cdots + a_n = nk</math> for some integer <math>k</math>, we can keep adding <math>k</math> to satisfy the conditions, provided that <math>k\leq n</math>. This is true since <math>k\leq\frac{n + 1}{2}\leq n</math>, so the sequence must eventually become constant. | ||
+ | |||
+ | === Solution 3 === | ||
Define <math>S_k = a_1 + a_2 + \cdots + a_k</math>, and <math>b_k = \frac{S_k}{k}</math>. By the problem hypothesis, <math>b_k</math> is an integer valued sequence. | Define <math>S_k = a_1 + a_2 + \cdots + a_k</math>, and <math>b_k = \frac{S_k}{k}</math>. By the problem hypothesis, <math>b_k</math> is an integer valued sequence. | ||
Revision as of 20:37, 6 August 2014
Problem
(Sam Vandervelde) Let be a positive integer. Define a sequence by setting and, for each , letting be the unique integer in the range for which is divisible by . For instance, when the obtained sequence is . Prove that for any the sequence eventually becomes constant.
Solutions
Solution 1
Let and . Thus, because , , and by definition, . Thus, . Also, both and are integers, so . As the 's form a non-increasing sequence of positive integers, they must eventually become constant.
Therefore, for some sufficiently large value of . Then , so eventually the sequence becomes constant.
Solution 2
Let . Since , we have that Since for some integer , we can keep adding to satisfy the conditions, provided that . This is true since , so the sequence must eventually become constant.
Solution 3
Define , and . By the problem hypothesis, is an integer valued sequence.
Lemma: There exists a such that .
Proof: Choose any such that . Then as desired.
Let be the smallest such that . Then , and . To make an integer, must be divisible by . Thus, because is divisible by , , and, because , . Then as well. Repeating the same process using instead of gives , and an easy induction can prove that for all , . Thus, becomes a constant function for arbitrarily large values of .
Alternate solutions are always welcome. If you have a different, elegant solution to this problem, please add it to this page.
See also
- <url>viewtopic.php?t=145842 Discussion on AoPS/MathLinks</url>
2007 USAMO (Problems • Resources) | ||
Preceded by First Question |
Followed by Problem 2 | |
1 • 2 • 3 • 4 • 5 • 6 | ||
All USAMO Problems and Solutions |
The problems on this page are copyrighted by the Mathematical Association of America's American Mathematics Competitions.