Difference between revisions of "2004 AMC 10B Problems/Problem 2"

m (Problem)
Line 1: Line 1:
 
==Problem==
 
==Problem==
  
How many two-digit positive integers have at least one 7 as a digit?
+
How many two-digit positive integers have at least one <math>7</math> as a digit?
  
 
<math> \mathrm{(A) \ } 10 \qquad \mathrm{(B) \ } 18\qquad \mathrm{(C) \ } 19 \qquad \mathrm{(D) \ } 20\qquad \mathrm{(E) \ } 30 </math>
 
<math> \mathrm{(A) \ } 10 \qquad \mathrm{(B) \ } 18\qquad \mathrm{(C) \ } 19 \qquad \mathrm{(D) \ } 20\qquad \mathrm{(E) \ } 30 </math>

Revision as of 20:00, 22 July 2014

Problem

How many two-digit positive integers have at least one $7$ as a digit?

$\mathrm{(A) \ } 10 \qquad \mathrm{(B) \ } 18\qquad \mathrm{(C) \ } 19 \qquad \mathrm{(D) \ } 20\qquad \mathrm{(E) \ } 30$

Solution

Ten numbers ($70,71,\dots,79$) have $7$ as the tens digit. Nine numbers ($17,27,\dots,97$) have it as the ones digit. Number $77$ is in both sets.

Thus the result is $10+9-1=18 \Rightarrow$ $\boxed{(B)}$.

See also

2004 AMC 10B (ProblemsAnswer KeyResources)
Preceded by
Problem 1
Followed by
Problem 3
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25
All AMC 10 Problems and Solutions

The problems on this page are copyrighted by the Mathematical Association of America's American Mathematics Competitions. AMC logo.png