Difference between revisions of "2014 AIME II Problems/Problem 5"
(→See also) |
m (→Solution) |
||
Line 4: | Line 4: | ||
==Solution== | ==Solution== | ||
− | Let <math>r</math>, <math>s</math>, <math>-r | + | Let <math>r</math>, <math>s</math>, and <math>-r-s</math> be the roots of <math>p(x)</math> (per Vieta's). Then <math>r^3 + ar + b = 0</math> and similarly for <math>s</math>. Also, |
<cmath>q(r+4) = (r+4)^3 + a(r+4) + b + 240 = 12r^2 + 48r + 304 + 4a = 0</cmath> | <cmath>q(r+4) = (r+4)^3 + a(r+4) + b + 240 = 12r^2 + 48r + 304 + 4a = 0</cmath> | ||
Revision as of 15:42, 17 June 2014
Problem 5
Real numbers and are roots of , and and are roots of . Find the sum of all possible values of .
Solution
Let , , and be the roots of (per Vieta's). Then and similarly for . Also,
Set up a similar equation for :
Simplifying and adding the equations gives
Now, let's deal with the . Equating the a in both equations (per Vieta) which eventually simplifies to
Substitution into (*) should give and , corresponding to and , and , for an answer of .
See also
2014 AIME II (Problems • Answer Key • Resources) | ||
Preceded by Problem 4 |
Followed by Problem 6 | |
1 • 2 • 3 • 4 • 5 • 6 • 7 • 8 • 9 • 10 • 11 • 12 • 13 • 14 • 15 | ||
All AIME Problems and Solutions |
The problems on this page are copyrighted by the Mathematical Association of America's American Mathematics Competitions.