Difference between revisions of "User talk:Bobthesmartypants/Sandbox"
(→Solution) |
(→Solution) |
||
Line 164: | Line 164: | ||
draw(anglemark((1,0),(0,0),dir(5.71))); | draw(anglemark((1,0),(0,0),dir(5.71))); | ||
</asy> | </asy> | ||
+ | |||
+ | ==inscribed triangle== | ||
+ | |||
+ | <asy> | ||
+ | draw((dir(0)--dir(120)--dir(240)--dir(0)..dir(120)..dir(240)..dir(0)--cycle)); | ||
+ | draw(dir(56)--dir(230),green); | ||
+ | draw(dir(-23)--dir(-98),red);</asy> | ||
+ | |||
+ | <asy> | ||
+ | draw((dir(0)--dir(120)--dir(240)--dir(0)..dir(120)..dir(240)..dir(0)--cycle)); | ||
+ | draw(dir(0)--dir(36),red); | ||
+ | draw(dir(0)--dir(72),red); | ||
+ | draw(dir(0)--dir(108),red); | ||
+ | draw(dir(0)--dir(144),green); | ||
+ | draw(dir(0)--dir(180),green); | ||
+ | draw(dir(0)--dir(216),green); | ||
+ | draw(dir(0)--dir(-36),red); | ||
+ | draw(dir(0)--dir(-72),red); | ||
+ | draw(dir(0)--dir(-108),red); | ||
+ | </asy> | ||
+ | |||
+ | <asy> | ||
+ | draw((dir(30)--dir(150)--dir(270)--dir(30)..dir(150)..dir(270)..dir(30)--cycle)); | ||
+ | draw(dir(-72)--dir(180+72),red); | ||
+ | draw(dir(-54)--dir(180+54),red); | ||
+ | draw(dir(-36)--dir(180+36),red); | ||
+ | draw(dir(-18)--dir(180+18),green); | ||
+ | draw(dir(-0)--dir(180+0),green); | ||
+ | draw(dir(72)--dir(180-72),red); | ||
+ | draw(dir(54)--dir(180-54),red); | ||
+ | draw(dir(36)--dir(180-36),red); | ||
+ | draw(dir(18)--dir(180-18),green); | ||
+ | |||
+ | </asy> | ||
+ | |||
+ | <asy> | ||
+ | import olympiad; | ||
+ | size(300); | ||
+ | |||
+ | draw(dir(0)..dir(60)..dir(120)..dir(180)--cycle); | ||
+ | draw((0,0)--dir(30)--dir(150)--cycle); | ||
+ | draw((0,0)--dir(90)); | ||
+ | label("$r$",0.5*dir(30),dir(-60)); | ||
+ | label("$r$",0.5*dir(150),dir(240)); | ||
+ | label("$\frac{r}{2}$",0.25*dir(90),dir(0)); | ||
+ | label("$\frac{r}{2}$",0.75*dir(90),dir(0)); | ||
+ | markscalefactor=0.01; | ||
+ | draw(anglemark(dir(90),(0,0),dir(150))); | ||
+ | draw(anglemark((0,0),dir(150),dir(30))); | ||
+ | draw(rightanglemark(dir(150),0.5*dir(90),(0,0))); | ||
+ | label("$60^{\circ}$",0.07*dir(120),dir(120)); | ||
+ | label("$30^{\circ}$",0.9*dir(150),dir(0));</asy> | ||
+ | |||
+ | <asy>draw((dir(0)--dir(120)--dir(240)--dir(0)..dir(120)..dir(240)..dir(0)--cycle)); | ||
+ | draw(Circle((0,0),0.5)); | ||
+ | draw(dir(0)--dir(45),red); | ||
+ | dot((dir(0)+dir(45))/2,red); | ||
+ | draw(dir(125)--dir(185),red); | ||
+ | dot((dir(125)+dir(185))/2,red); | ||
+ | draw(dir(240)--dir(325),red); | ||
+ | dot((dir(240)+dir(325))/2,red); | ||
+ | draw(dir(65)--dir(165),red); | ||
+ | dot((dir(65)+dir(165))/2,red); | ||
+ | draw(dir(200)--dir(254),red); | ||
+ | dot((dir(200)+dir(254))/2,red); | ||
+ | draw(dir(80)--dir(205),green); | ||
+ | dot((dir(80)+dir(205))/2,green); | ||
+ | draw(dir(200)--dir(345),green); | ||
+ | dot((dir(200)+dir(345))/2,green); | ||
+ | draw(dir(220)--dir(385),green); | ||
+ | dot((dir(220)+dir(385))/2,green); | ||
+ | draw(dir(-60)--dir(125),green); | ||
+ | dot((dir(-60)+dir(125))/2,green); | ||
+ | draw(dir(160)--dir(360),green); | ||
+ | dot((dir(160)+dir(360))/2,green);</asy> | ||
+ | |||
+ | <asy>draw((dir(0)--dir(120)--dir(240)--dir(0)..dir(120)..dir(240)..dir(0)--cycle)); | ||
+ | draw(Circle((0,0),0.5)); | ||
+ | draw((0,0)--0.5*dir(-60)); | ||
+ | draw((0,0)--dir(120)); | ||
+ | label("$r$",0.25*dir(-60),dir(-150)); | ||
+ | label("$R$",0.4*dir(120),dir(210)); | ||
+ | dot((0,0));</asy> |
Revision as of 19:49, 30 April 2014
Contents
Bobthesmartypants's Sandbox
Solution 1
First, continue to hit at . Also continue to hit at .
We have that . Because , we have .
Similarly, because , we have .
Therefore, .
We also have that because is a parallelogram, and .
Therefore, . This means that , so .
Therefore, .
Solution 2
Note that is rational and is not divisible by nor because .
This means the decimal representation of is a repeating decimal.
Let us set as the block that repeats in the repeating decimal: .
( written without the overline used to signify one number so won't confuse with notation for repeating decimal)
The fractional representation of this repeating decimal would be .
Taking the reciprocal of both sides you get .
Multiplying both sides by gives .
Since we divide on both sides of the equation to get .
Because is not divisible by (therefore ) since and is prime, it follows that .
Picture 1
Picture 2
physics problem
Solution
inscribed triangle