Difference between revisions of "2014 USAJMO Problems"

(Problem 2)
m (Problem 2)
Line 6: Line 6:
  
 
===Problem 2===
 
===Problem 2===
Let <math>\triangle{ABC}</math> be a non-equilateral, acute triangle with <math>\angle A=60^\cdot</math>, and let <math>O</math> and <math>H</math> denote the circumcenter and orthocenter of <math>\triangle{ABC}</math>, respectively.
+
Let <math>\triangle{ABC}</math> be a non-equilateral, acute triangle with <math>\angle A=60^\circ</math>, and let <math>O</math> and <math>H</math> denote the circumcenter and orthocenter of <math>\triangle{ABC}</math>, respectively.
  
 
(a) Prove that line <math>OH</math> intersects both segments <math>AB</math> and <math>AC</math>.
 
(a) Prove that line <math>OH</math> intersects both segments <math>AB</math> and <math>AC</math>.

Revision as of 19:44, 29 April 2014

Day 1

Problem 1

Let $a$, $b$, $c$ be real numbers greater than or equal to $1$. Prove that \[\min{\left (\frac{10a^2-5a+1}{b^2-5b+1},\frac{10b^2-5b+1}{c^2-5c+10},\frac{10c^2-5c+1}{a^2-5a+10}\right )}\leq abc\] Solution

Problem 2

Let $\triangle{ABC}$ be a non-equilateral, acute triangle with $\angle A=60^\circ$, and let $O$ and $H$ denote the circumcenter and orthocenter of $\triangle{ABC}$, respectively.

(a) Prove that line $OH$ intersects both segments $AB$ and $AC$.

(b) Line $OH$ intersects segments $AB$ and $AC$ at $P$ and $Q$, respectively. Denote by $s$ and $t$ the respective areas of triangle $APQ$ and quadrilateral $BPQC$. Determine the range of possible values for $s/t$.

Solution

Problem 3

Let $\mathbb{Z}$ be the set of integers. Find all functions $f : \mathbb{Z} \rightarrow \mathbb{Z}$ such that \[xf(2f(y)-x)+y^2f(2x-f(y))=\frac{f(x)^2}{x}+f(yf(y))\] for all $x, y \in \mathbb{Z}$ with $x \neq 0$.

Solution

Day 2

Problem 4

Solution

Problem 5

Solution

Problem 6

Solution