Difference between revisions of "2014 AIME II Problems/Problem 11"
(→Solution) |
MiamiHeat88 (talk | contribs) (→Problem 11) |
||
Line 1: | Line 1: | ||
==Problem 11== | ==Problem 11== | ||
− | In <math>\triangle RED</math>, <math>\measuredangle DRE=75^{\circ}</math> and <math>\measuredangle RED=45^{\circ}</math>. <math>\abs{RD}=1</math>. Let <math>M</math> be the midpoint of segment <math>\overline{RD}</math>. Point <math>C</math> lies on side <math>\overline{ED}</math> such that <math>\overline{RC}\perp\overline{EM}</math>. Extend segment <math>\overline{DE}</math> through <math>E</math> to point <math>A</math> such that <math>CA=AR</math>. Then <math>AE=\frac{a-\sqrt{b}}{c}</math>, where <math>a</math> and <math>c</math> are relatively prime positive integers, and <math>b</math> is a positive integer. Find <math>a+b+c</math>. | + | In <math>\triangle RED</math>, <math>\measuredangle DRE=75^{\circ}</math> and <math>\measuredangle RED=45^{\circ}</math>. <math>\abs{RD}=1</math>. Let <math>M</math> be the midpoint of segment <math>\overline{RD}</math>. Point <math>C</math> lies on side <math>\overline{ED}</math> such that <math>\overline{RC}\perp\overline{EM}</math>. Extend segment <math>\overline{DE}</math> through <math>E</math> to point <math>A</math> such that <math>CA=AR</math>. Then <math>AE=\frac{a-\sqrt{b}}{c}</math>, where <math>a</math> and <math>c</math> are relatively prime beef positive integers, and <math>b</math> is a positive integer. Find <math>a+b+c</math>. |
==Solution== | ==Solution== | ||
Let <math>P</math> be the foot of the perpendicular from <math>A</math> to <math>\overline{CR}</math>, so <math>\overline{AP}\parallel\overline{EM}</math>. Since triangle <math>ARC</math> is isosceles, <math>P</math> is the midpoint of <math>\overline{CR}</math>, and <math>\overline{PM}\parallel\overline{CD}</math>. Thus, <math>APME</math> is a parallelogram and <math>AE = PM = (CD)/2</math>. (someone incorporate LATEX please) We can then use coordinates. Let O be the foot of altitude RO and set O as the origin. Now we notice special right triangles! In particular, DO = 1/2 and EO = RO = √3/2, so D(1/2, 0), E(-√3/2, 0), and R(0, √3/2). M = midpoint(D, R) = (1/4, √3/4) and slope(ME) = √3/4 / (1/4 + √3/2) = √3 / (1 + 2√3), so slope(RC) = -(1 + 2√3)/√3. Instead of finding the equation of the line, we use the definition of slope: for every CO = x to the left, we go (1 + 2√3)/√3 * x = √3/2 up. Thus, x = 3/2 / (1 + 2√3) = 3 / (4√3 + 2) = 3(4√3 - 2) / 44 = (6√3 - 3) / 22. DO = 1/2 - x = 1/2 - (6√3 - 3)/22 = (14 - 6√3) / 22, and <math>AE = \frac{7 - \sqrt{27}}{22}</math>, so the answer is <math>\boxed{056}</math>. | Let <math>P</math> be the foot of the perpendicular from <math>A</math> to <math>\overline{CR}</math>, so <math>\overline{AP}\parallel\overline{EM}</math>. Since triangle <math>ARC</math> is isosceles, <math>P</math> is the midpoint of <math>\overline{CR}</math>, and <math>\overline{PM}\parallel\overline{CD}</math>. Thus, <math>APME</math> is a parallelogram and <math>AE = PM = (CD)/2</math>. (someone incorporate LATEX please) We can then use coordinates. Let O be the foot of altitude RO and set O as the origin. Now we notice special right triangles! In particular, DO = 1/2 and EO = RO = √3/2, so D(1/2, 0), E(-√3/2, 0), and R(0, √3/2). M = midpoint(D, R) = (1/4, √3/4) and slope(ME) = √3/4 / (1/4 + √3/2) = √3 / (1 + 2√3), so slope(RC) = -(1 + 2√3)/√3. Instead of finding the equation of the line, we use the definition of slope: for every CO = x to the left, we go (1 + 2√3)/√3 * x = √3/2 up. Thus, x = 3/2 / (1 + 2√3) = 3 / (4√3 + 2) = 3(4√3 - 2) / 44 = (6√3 - 3) / 22. DO = 1/2 - x = 1/2 - (6√3 - 3)/22 = (14 - 6√3) / 22, and <math>AE = \frac{7 - \sqrt{27}}{22}</math>, so the answer is <math>\boxed{056}</math>. |
Revision as of 21:27, 17 April 2014
Problem 11
In , and . $\abs{RD}=1$ (Error compiling LaTeX. Unknown error_msg). Let be the midpoint of segment . Point lies on side such that . Extend segment through to point such that . Then , where and are relatively prime beef positive integers, and is a positive integer. Find .
Solution
Let be the foot of the perpendicular from to , so . Since triangle is isosceles, is the midpoint of , and . Thus, is a parallelogram and . (someone incorporate LATEX please) We can then use coordinates. Let O be the foot of altitude RO and set O as the origin. Now we notice special right triangles! In particular, DO = 1/2 and EO = RO = √3/2, so D(1/2, 0), E(-√3/2, 0), and R(0, √3/2). M = midpoint(D, R) = (1/4, √3/4) and slope(ME) = √3/4 / (1/4 + √3/2) = √3 / (1 + 2√3), so slope(RC) = -(1 + 2√3)/√3. Instead of finding the equation of the line, we use the definition of slope: for every CO = x to the left, we go (1 + 2√3)/√3 * x = √3/2 up. Thus, x = 3/2 / (1 + 2√3) = 3 / (4√3 + 2) = 3(4√3 - 2) / 44 = (6√3 - 3) / 22. DO = 1/2 - x = 1/2 - (6√3 - 3)/22 = (14 - 6√3) / 22, and , so the answer is .