Difference between revisions of "2014 AMC 12B Problems/Problem 12"

(Solution)
(Problem)
Line 3: Line 3:
 
A set S consists of triangles whose sides have integer lengths less than 5, and no two elements of S are congruent or similar. What is the largest number of elements that S can have?  
 
A set S consists of triangles whose sides have integer lengths less than 5, and no two elements of S are congruent or similar. What is the largest number of elements that S can have?  
  
\textbf{(A)}\ 8\qquad\textbf{(B)}\ 9\qquad\textbf{(C)}\ 10\qquad\textbf{(D)}}\ 11\qquad\textbf{(E)}\ 12
+
<math>\textbf{(A)}\ 8\qquad\textbf{(B)}\ 9\qquad\textbf{(C)}\ 10\qquad\textbf{(D)}}\ 11\qquad\textbf{(E)}\ 12</math>
  
 
==Solution==
 
==Solution==

Revision as of 21:30, 20 February 2014

Problem

A set S consists of triangles whose sides have integer lengths less than 5, and no two elements of S are congruent or similar. What is the largest number of elements that S can have?

$\textbf{(A)}\ 8\qquad\textbf{(B)}\ 9\qquad\textbf{(C)}\ 10\qquad\textbf{(D)}}\ 11\qquad\textbf{(E)}\ 12$ (Error compiling LaTeX. Unknown error_msg)

Solution

Define $T$ to be the set of all triples $(a, b, c)$ such that $a \ge b \ge c$, $b+c > a$, and $a, b, c \le 5$. Now we enumerate the elements of $T$:

$(4, 4, 4)$

$(4, 4, 3)$

$(4, 4, 2)$

$(4, 4, 1)$

$(4, 3, 3)$

$(4, 3, 2)$

$(3, 3, 3)$

$(3, 3, 2)$

$(3, 3, 1)$

$(3, 2, 2)$

$(2, 2, 2)$

$(2, 2, 1)$

$(1, 1, 1)$

It should be clear that $|S|$ is simply $|T|$ minus the larger "duplicates" (e.g. $(2, 2, 2)$ is a larger duplicate of $(1, 1, 1)$). Since $|T|$ is 13 and the number of higher duplicates is 4, the answer is $13 - 4$ or $9 (B)$.