Difference between revisions of "2014 AMC 10B Problems/Problem 22"

(Created page with "==Problem== ==Solution== ==See Also== {{AMC10 box|year=2014|ab=B|num-b=21|num-a=23}} {{MAA Notice}}")
 
(Problem)
Line 1: Line 1:
 
==Problem==
 
==Problem==
 +
Eight semicircles line the inside of a square with side length 2 as shown. What is the radius of the circle tangent to all of these semicircles?
 +
 +
<math>\text{(A) } \dfrac{1+\sqrt2}4 \quad \text{(B) } \dfrac{\sqrt5-1}2 \quad \text{(C) } \dfrac{\sqrt3+1}4 \quad \text{(D) } \dfrac{2\sqrt3}5 \quad \text{(E) } \dfrac{\sqrt5}3</math>
 +
 +
<asy>
 +
scale(200);
 +
draw(scale(.5)*((-1,-1)--(1,-1)--(1,1)--(-1,1)--cycle));
 +
path p = arc((.25,-.5),.25,0,180)--arc((-.25,-.5),.25,0,180);
 +
draw(p);
 +
p=rotate(90)*p; draw(p);
 +
p=rotate(90)*p; draw(p);
 +
p=rotate(90)*p; draw(p);
 +
draw(scale((sqrt(5)-1)/4)*unitcircle);
 +
</asy>
  
 
==Solution==
 
==Solution==

Revision as of 19:14, 20 February 2014

Problem

Eight semicircles line the inside of a square with side length 2 as shown. What is the radius of the circle tangent to all of these semicircles?

$\text{(A) } \dfrac{1+\sqrt2}4 \quad \text{(B) } \dfrac{\sqrt5-1}2 \quad \text{(C) } \dfrac{\sqrt3+1}4 \quad \text{(D) } \dfrac{2\sqrt3}5 \quad \text{(E) } \dfrac{\sqrt5}3$

[asy] scale(200); draw(scale(.5)*((-1,-1)--(1,-1)--(1,1)--(-1,1)--cycle)); path p = arc((.25,-.5),.25,0,180)--arc((-.25,-.5),.25,0,180); draw(p); p=rotate(90)*p; draw(p); p=rotate(90)*p; draw(p); p=rotate(90)*p; draw(p); draw(scale((sqrt(5)-1)/4)*unitcircle); [/asy]

Solution

See Also

2014 AMC 10B (ProblemsAnswer KeyResources)
Preceded by
Problem 21
Followed by
Problem 23
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25
All AMC 10 Problems and Solutions

The problems on this page are copyrighted by the Mathematical Association of America's American Mathematics Competitions. AMC logo.png