Difference between revisions of "2014 AMC 10B Problems/Problem 15"

(Created page with "==Problem== ==Solution== ==See Also== {{AMC10 box|year=2014|ab=B|num-b=14|num-a=16}} {{MAA Notice}}")
 
(Added problem [credits to AlcumusGuy])
Line 1: Line 1:
 
==Problem==
 
==Problem==
 +
In rectangle <math>ABCD</math>, <math>DC = 2CB</math> and points <math>E</math> and <math>F</math> lie on <math>\overline{AB}</math> so that <math>\overline{ED}</math> and <math>\overline{FD}</math> trisect <math>\angle ADC</math> as shown. What is the ratio of the area of <math>\triangle DEF</math> to the area of rectangle <math>ABCD</math>?
 +
 +
[asy]
 +
draw((0, 0)--(0, 1)--(2, 1)--(2, 0)--cycle);
 +
draw((0, 0)--(sqrt(3)/3, 1));
 +
draw((0, 0)--(sqrt(3), 1));
 +
label("A", (0, 1), N);
 +
label("B", (2, 1), N);
 +
label("C", (2, 0), S);
 +
label("D", (0, 0), S);
 +
label("E", (sqrt(3)/3, 1), N);
 +
label("F", (sqrt(3), 1), N);
 +
[/asy]
 +
 +
<math> \textbf{(A)}\ \ \frac{\sqrt{3}}{6}\qquad\textbf{(B)}\ \frac{\sqrt{6}}{8}\qquad\textbf{(C)}\ \frac{3\sqrt{3}}{16}\qquad\textbf{(D)}}\ \frac{1}{3}\qquad\textbf{(E)}\ \frac{\sqrt{2}}{4}</math>
  
 
==Solution==
 
==Solution==

Revision as of 17:02, 20 February 2014

Problem

In rectangle $ABCD$, $DC = 2CB$ and points $E$ and $F$ lie on $\overline{AB}$ so that $\overline{ED}$ and $\overline{FD}$ trisect $\angle ADC$ as shown. What is the ratio of the area of $\triangle DEF$ to the area of rectangle $ABCD$?

[asy] draw((0, 0)--(0, 1)--(2, 1)--(2, 0)--cycle); draw((0, 0)--(sqrt(3)/3, 1)); draw((0, 0)--(sqrt(3), 1)); label("A", (0, 1), N); label("B", (2, 1), N); label("C", (2, 0), S); label("D", (0, 0), S); label("E", (sqrt(3)/3, 1), N); label("F", (sqrt(3), 1), N); [/asy]

$\textbf{(A)}\ \ \frac{\sqrt{3}}{6}\qquad\textbf{(B)}\ \frac{\sqrt{6}}{8}\qquad\textbf{(C)}\ \frac{3\sqrt{3}}{16}\qquad\textbf{(D)}}\ \frac{1}{3}\qquad\textbf{(E)}\ \frac{\sqrt{2}}{4}$ (Error compiling LaTeX. Unknown error_msg)

Solution

See Also

2014 AMC 10B (ProblemsAnswer KeyResources)
Preceded by
Problem 14
Followed by
Problem 16
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25
All AMC 10 Problems and Solutions

The problems on this page are copyrighted by the Mathematical Association of America's American Mathematics Competitions. AMC logo.png