Difference between revisions of "2014 AMC 12A Problems/Problem 24"

(Solution 2)
(Solution 2)
Line 20: Line 20:
 
==Solution 2==
 
==Solution 2==
  
First, notice that the recursion and the definition of <math>f_0(x)</math> require that for all <math>x</math> such that <math>-100 \le x \le 100</math>, if <math>f_{100}(x)=0</math>, then <math>f_0(x)</math> is even. Now, we can do case work on <math>x</math> to find which values of <math>x</math> (such that <math>-100 \le x \le 100</math>) make <math>f_0(x)</math> even. The answer comes out to be all the even values of <math>x</math> in the range <math>-100 \le x \le 100</math>. So, the answer is <math>\boxed{\textbf{(C) }301}</math>.
+
First, notice that the recursion and the definition of <math>f_0(x)</math> require that for all <math>x</math> such that <math>-100 \le x \le 100</math>, if <math>f_{100}(x)=0</math>, then <math>f_0(x)</math> is even. Now, we can do case work on <math>x</math> to find which values of <math>x</math> (such that <math>-100 \le x \le 100</math>) make <math>f_0(x)</math> even. The answer comes out to be all the even values of <math>x</math> in the range <math>-100 \le x \le 100</math>. So, the answer is <math>\boxed{\textbf{(C)}\quad301}</math>.
  
 
==See Also==
 
==See Also==
 
{{AMC12 box|year=2014|ab=A|num-b=23|num-a=25}}
 
{{AMC12 box|year=2014|ab=A|num-b=23|num-a=25}}
 
{{MAA Notice}}
 
{{MAA Notice}}

Revision as of 18:12, 15 February 2014

Problem

Let $f_0(x)=x+|x-100|-|x+100|$, and for $n\geq 1$, let $f_n(x)=|f_{n-1}(x)|-1$. For how many values of $x$ is $f_{100}(x)=0$?

$\textbf{(A) }299\qquad \textbf{(B) }300\qquad \textbf{(C) }301\qquad \textbf{(D) }302\qquad \textbf{(E) }303\qquad$

Solution

1. Draw the graph of $f_0(x)$ by dividing the domain into three parts.

2. Look at the recursive rule. Take absolute of the previous function and down by 1 to get the next function.

3. Count the x intercepts of the each function and find the pattern.

The pattern turns out to be $3n+1$ solutions, and the answer is thus $\textbf{(C) }301\qquad$. (Revised by Flamedragon)

Solution 2

First, notice that the recursion and the definition of $f_0(x)$ require that for all $x$ such that $-100 \le x \le 100$, if $f_{100}(x)=0$, then $f_0(x)$ is even. Now, we can do case work on $x$ to find which values of $x$ (such that $-100 \le x \le 100$) make $f_0(x)$ even. The answer comes out to be all the even values of $x$ in the range $-100 \le x \le 100$. So, the answer is $\boxed{\textbf{(C)}\quad301}$.

See Also

2014 AMC 12A (ProblemsAnswer KeyResources)
Preceded by
Problem 23
Followed by
Problem 25
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25
All AMC 12 Problems and Solutions

The problems on this page are copyrighted by the Mathematical Association of America's American Mathematics Competitions. AMC logo.png