GET READY FOR THE AMC 12 WITH AoPS
Learn with outstanding instructors and top-scoring students from around the world in our AMC 12 Problem Series online course.
CHECK SCHEDULE

Difference between revisions of "2014 AMC 12B Problems"

(Problem 12)
(Cleaned up the trollers mess)
Line 1: Line 1:
 
==Problem 1==
 
==Problem 1==
 
Find <math>1 + 2 + 3 + ... + 99 + 100</math>.
 
 
<math>\mathrm {(A) } 4950 \qquad \mathrm {(B) } 5000 \qquad \mathrm {(C) } 5050 \qquad \mathrm {(D) } 5075 \qquad \mathrm {(E) } 5100</math>
 
  
 
[[2014 AMC 12B Problems/Problem 1|Solution]]
 
[[2014 AMC 12B Problems/Problem 1|Solution]]
Line 18: Line 14:
  
 
==Problem 4==
 
==Problem 4==
 
A circle with radius <math>R</math> is circumscribed around a square. Another circle with radius <math>r</math> is inscribed in the square. Find <math>\frac{R}{r}</math>.
 
 
<math>\mathrm {(A) } \frac{5}{4} \qquad \mathrm {(B) } \sqrt2 \qquad \mathrm {(C) } \frac{3}{2} \qquad \mathrm {(D) } \sqrt3 \qquad \mathrm {(E) } 2</math>
 
  
 
[[2014 AMC 12B Problems/Problem 4|Solution]]
 
[[2014 AMC 12B Problems/Problem 4|Solution]]
Line 62: Line 54:
 
==Problem 12==
 
==Problem 12==
  
Find the remainder when <math>100! + 99! + 98! + ... + 3! + 2! + 1!</math> is divided by <math>100</math>.
 
  
<math>\mathrm {(A) } 11 \qquad \mathrm {(B) } 33 \qquad \mathrm {(C) } 55 \qquad \mathrm {(D) } 77 \qquad \mathrm {(E) } 99</math>
 
  
 
[[2014 AMC 12B Problems/Problem 12|Solution]]
 
[[2014 AMC 12B Problems/Problem 12|Solution]]
Line 74: Line 64:
  
 
==Problem 14==
 
==Problem 14==
Amy, Bob, Charlie, Dorothy, Edd, and Frank each select distinct integers between <math>2005</math> and <math>2014</math>, inclusive. What is the probability that the four integers are the lengths of the sides and diagonals of a cyclic quadrilateral?
 
  
<math>\textbf{(A)}\ 0 \qquad \textbf{(B)}\ \frac{1}{42} \qquad \textbf{(C)}\ \frac{1}{30} \qquad \textbf{(D)}\ \frac{1}{21} \qquad \textbf{(E)}\ \frac{1}{7}</math>
 
  
 
[[2014 AMC 12B Problems/Problem 14|Solution]]
 
[[2014 AMC 12B Problems/Problem 14|Solution]]
Line 92: Line 80:
 
==Problem 17==
 
==Problem 17==
  
Let <math>S</math> be the set of points on the graph of <math>y = x + \sqrt{x}</math> such that <math>x</math> is an integer between <math>-100</math> and <math>100</math>,  inclusive. How many distinct line segments with endpoints in <math>S</math> have integer side lengths?
 
 
<math>\mathrm {(A) } 0 \qquad \mathrm {(B) } 1 \qquad \mathrm {(C) } 2 \qquad \mathrm {(D) } 3 \qquad \mathrm {(E) } 4</math>
 
  
 
[[2014 AMC 12B Problems/Problem 17|Solution]]
 
[[2014 AMC 12B Problems/Problem 17|Solution]]

Revision as of 23:26, 8 February 2014