Difference between revisions of "2012 AMC 10B Problems/Problem 18"

(Problem 18)
Line 1: Line 1:
==Problem 18==
+
==Problem==
 
Suppose that one of every 500 people in a certain population has a particular disease, which displays no symptoms. A blood test is available for screening for this disease. For a person who has this disease, the test always turns out positive. For a person who does not have the disease, however, there is a <math>2\%</math> false positive rate--in other words, for such people, <math>98\%</math> of the time the test will turn out negative, but <math>2\%</math> of the time the test will turn out positive and will incorrectly indicate that the person has the disease. Let <math>p</math> be the probability that a person who is chosen at random from this population and gets a positive test result actually has the disease. Which of the following is closest to <math>p</math>?
 
Suppose that one of every 500 people in a certain population has a particular disease, which displays no symptoms. A blood test is available for screening for this disease. For a person who has this disease, the test always turns out positive. For a person who does not have the disease, however, there is a <math>2\%</math> false positive rate--in other words, for such people, <math>98\%</math> of the time the test will turn out negative, but <math>2\%</math> of the time the test will turn out positive and will incorrectly indicate that the person has the disease. Let <math>p</math> be the probability that a person who is chosen at random from this population and gets a positive test result actually has the disease. Which of the following is closest to <math>p</math>?
  

Revision as of 20:26, 8 February 2014

Problem

Suppose that one of every 500 people in a certain population has a particular disease, which displays no symptoms. A blood test is available for screening for this disease. For a person who has this disease, the test always turns out positive. For a person who does not have the disease, however, there is a $2\%$ false positive rate--in other words, for such people, $98\%$ of the time the test will turn out negative, but $2\%$ of the time the test will turn out positive and will incorrectly indicate that the person has the disease. Let $p$ be the probability that a person who is chosen at random from this population and gets a positive test result actually has the disease. Which of the following is closest to $p$?

$\textbf{(A)}\ \frac{1}{98}\qquad\textbf{(B)}\ \frac{1}{9}\qquad\textbf{(C)}\ \frac{1}{11}\qquad\textbf{(D)}\ \frac{49}{99}\qquad\textbf{(E)}\ \frac{98}{99}$

Solution

This question can be solved by considering all the possibilities:

$1$ out of $500$ people will have the disease and will be tested positive for the disease.

Out of the remaining $499$ people, $2\%$, or $9.98$ people, will be tested positive for the disease incorrectly.

Therefore, $p$ can be found by taking $\dfrac{1}{1+9.98}$, which is closest to $\dfrac{1}{11}$,or $\boxed{\textbf{(C)}}$

See Also

2012 AMC 10B (ProblemsAnswer KeyResources)
Preceded by
Problem 17
Followed by
Problem 20
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25
All AMC 10 Problems and Solutions

The problems on this page are copyrighted by the Mathematical Association of America's American Mathematics Competitions. AMC logo.png