Difference between revisions of "2014 AMC 12A Problems/Problem 7"

(Solution)
m (Solution)
Line 11: Line 11:
  
 
== Solution ==
 
== Solution ==
so the terms are
 
  
<math>\sqrt 3</math>, <math>\sqrt[3]3</math>, and <math>\sqrt[6]3</math> which is equivalent to <math>3^{\frac{3}{6}}</math>, <math>3^{\frac{2}{6}}</math>, and <math>3^{\frac{1}{6}}</math>
+
The terms are  <math>\sqrt 3</math>, <math>\sqrt[3]3</math>, and <math>\sqrt[6]3</math>, which are equivalent to <math>3^{\frac{3}{6}}</math>, <math>3^{\frac{2}{6}}</math>, and <math>3^{\frac{1}{6}}</math>.  So the next term will be <math>3^{\frac{0}{6}}=1</math>, so the answer is <math>\boxed{\textbf{(A)}}</math>.
so the next term will be <math>3^{\frac{0}{6}}</math> which is equal to <math>1\textbf{(A) }\qquad</math>
 

Revision as of 19:46, 7 February 2014

Problem 7

The first three terms of a geometric progression are $\sqrt 3$, $\sqrt[3]3$, and $\sqrt[6]3$. What is the fourth term?

$\textbf{(A) }1\qquad \textbf{(B) }\sqrt[7]3\qquad \textbf{(C) }\sqrt[8]3\qquad \textbf{(D) }\sqrt[9]3\qquad \textbf{(E) }\sqrt[10]3\qquad$


Solution

The terms are $\sqrt 3$, $\sqrt[3]3$, and $\sqrt[6]3$, which are equivalent to $3^{\frac{3}{6}}$, $3^{\frac{2}{6}}$, and $3^{\frac{1}{6}}$. So the next term will be $3^{\frac{0}{6}}=1$, so the answer is $\boxed{\textbf{(A)}}$.