Difference between revisions of "2014 AMC 10A Problems/Problem 6"

(Solution)
Line 5: Line 5:
 
<math> \textbf{(A)}\ \frac{bde}{ac}\qquad\textbf{(B)}\ \frac{ac}{bde}\qquad\textbf{(C)}\ \frac{abde}{c}\qquad\textbf{(D)}}\ \frac{bcde}{a}\qquad\textbf{(E)}\ \frac{abc}{de}</math>
 
<math> \textbf{(A)}\ \frac{bde}{ac}\qquad\textbf{(B)}\ \frac{ac}{bde}\qquad\textbf{(C)}\ \frac{abde}{c}\qquad\textbf{(D)}}\ \frac{bcde}{a}\qquad\textbf{(E)}\ \frac{abc}{de}</math>
  
==Solution==
+
==Solution 1==
 +
 
 +
We need to multiply <math>b</math> by <math>\frac{d}{a}</math> for the new cows and <math>\frac{e}{c}</math> for the new time, so the answer is <math>b\cdot \frac{d}{a}\cdot \frac{e}{c}=\frac{bde}{ac}</math>, or <math>\boxed{\textbf{(A)}}</math>.
 +
 
 +
(Solution by ahaanomegas)
 +
 
 +
==Solution 2==
 
We see that the the amount of cows is inversely proportional to the amount of days and directly proportional to the gallons of milk. So our constant is <math>\dfrac{ac}{b}</math>.
 
We see that the the amount of cows is inversely proportional to the amount of days and directly proportional to the gallons of milk. So our constant is <math>\dfrac{ac}{b}</math>.
  

Revision as of 19:22, 7 February 2014

Problem

Suppose that $a$ cows give $b$ gallons of milk in $c$ days. At this rate, how many gallons of milk will $d$ cows give in $e$ days?

$\textbf{(A)}\ \frac{bde}{ac}\qquad\textbf{(B)}\ \frac{ac}{bde}\qquad\textbf{(C)}\ \frac{abde}{c}\qquad\textbf{(D)}}\ \frac{bcde}{a}\qquad\textbf{(E)}\ \frac{abc}{de}$ (Error compiling LaTeX. Unknown error_msg)

Solution 1

We need to multiply $b$ by $\frac{d}{a}$ for the new cows and $\frac{e}{c}$ for the new time, so the answer is $b\cdot \frac{d}{a}\cdot \frac{e}{c}=\frac{bde}{ac}$, or $\boxed{\textbf{(A)}}$.

(Solution by ahaanomegas)

Solution 2

We see that the the amount of cows is inversely proportional to the amount of days and directly proportional to the gallons of milk. So our constant is $\dfrac{ac}{b}$.

Let $g$ be the answer to the question. We have $\dfrac{de}{g}=\dfrac{ac}{b}\implies gac=bde\implies g=\dfrac{bde}{ac}\implies\boxed{ \textbf{(A)}\ \frac{bde}{ac}}$

See Also

2014 AMC 10A (ProblemsAnswer KeyResources)
Preceded by
Problem 5
Followed by
Problem 7
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25
All AMC 10 Problems and Solutions

The problems on this page are copyrighted by the Mathematical Association of America's American Mathematics Competitions. AMC logo.png