Difference between revisions of "2014 AMC 12A Problems/Problem 5"

Line 1: Line 1:
Problem 5
+
==Problem==
 
+
On an algebra quiz, <math>10\%</math> of the students scored <math>70</math> points, <math>35\%</math> scored <math>80</math> points, <math>30\%</math> scored <math>90</math> points, and the rest scored <math>100</math> points. What is the difference between the mean and median score of the students' scores on this quiz?
On an algebra quiz, 10% of the students scored 70 points, 35% scored 80 points, 30% scored 90 points, and the rest scored 100 points. What is the difference between the mean and median score of the students' scores on this quiz? <br>
 
(A) 1  (B) 2  (C) 3  (D)  4  (E) 5
 
 
 
Solution
 
  
 +
<math> \textbf{(A)}\ 1\qquad\textbf{(B)}\ 2\qquad\textbf{(C)}\ 3\qquad\textbf{(D)}}\ 4\qquad\textbf{(E)}\ 5</math>
 +
==Solution==
 
The mean can solved by the following. 10% of 70 is 7, 35% of 80 is 28, 30% of 90 is 27, and (100% - 10% - 35% - 30%) = 25%. 25% of 100 is 25. 7 + 28 + 27 + 25 = 87. <br>
 
The mean can solved by the following. 10% of 70 is 7, 35% of 80 is 28, 30% of 90 is 27, and (100% - 10% - 35% - 30%) = 25%. 25% of 100 is 25. 7 + 28 + 27 + 25 = 87. <br>
 
The median can be solved by finding the score present at the 50% mark, which is 90.<br>
 
The median can be solved by finding the score present at the 50% mark, which is 90.<br>
 
90-87 equals 3, which is (C) 3.
 
90-87 equals 3, which is (C) 3.

Revision as of 19:06, 7 February 2014

Problem

On an algebra quiz, $10\%$ of the students scored $70$ points, $35\%$ scored $80$ points, $30\%$ scored $90$ points, and the rest scored $100$ points. What is the difference between the mean and median score of the students' scores on this quiz?

$\textbf{(A)}\ 1\qquad\textbf{(B)}\ 2\qquad\textbf{(C)}\ 3\qquad\textbf{(D)}}\ 4\qquad\textbf{(E)}\ 5$ (Error compiling LaTeX. Unknown error_msg)

Solution

The mean can solved by the following. 10% of 70 is 7, 35% of 80 is 28, 30% of 90 is 27, and (100% - 10% - 35% - 30%) = 25%. 25% of 100 is 25. 7 + 28 + 27 + 25 = 87.
The median can be solved by finding the score present at the 50% mark, which is 90.
90-87 equals 3, which is (C) 3.