Difference between revisions of "2014 AMC 10A Problems/Problem 21"
(Created page with "==Problem== Positive integers <math>a</math> and <math>b</math> are such that the graphs of <math>y=ax+5</math> and <math>y=3x+b</math> intersect the <math>x</math>-axis at the s...") |
|||
Line 3: | Line 3: | ||
<math> \textbf{(A)}\ {-20}\qquad\textbf{(B)}\ {-18}\qquad\textbf{(C)}\ {-15}\qquad\textbf{(D)}\ {-12}\qquad\textbf{(E)}\ {-8} </math> | <math> \textbf{(A)}\ {-20}\qquad\textbf{(B)}\ {-18}\qquad\textbf{(C)}\ {-15}\qquad\textbf{(D)}\ {-12}\qquad\textbf{(E)}\ {-8} </math> | ||
+ | |||
+ | ==Solution== | ||
+ | |||
+ | ==See Also== | ||
+ | |||
+ | {{AMC10 box|year=2014|ab=A|num-b=20|num-a=22}} | ||
+ | {{MAA Notice}} |
Revision as of 22:20, 6 February 2014
Problem
Positive integers and are such that the graphs of and intersect the -axis at the same point. What is the sum of all possible -coordinates of these points of intersection?
Solution
See Also
2014 AMC 10A (Problems • Answer Key • Resources) | ||
Preceded by Problem 20 |
Followed by Problem 22 | |
1 • 2 • 3 • 4 • 5 • 6 • 7 • 8 • 9 • 10 • 11 • 12 • 13 • 14 • 15 • 16 • 17 • 18 • 19 • 20 • 21 • 22 • 23 • 24 • 25 | ||
All AMC 10 Problems and Solutions |
The problems on this page are copyrighted by the Mathematical Association of America's American Mathematics Competitions.