Difference between revisions of "2014 AMC 10A Problems/Problem 9"

(Created page with "==Problem== The two legs of a right triangle, which are altitudes, have lengths <math>2\sqrt3</math> and <math>6</math>. How long is the third altitude of the triangle? <math> ...")
 
Line 4: Line 4:
  
 
<math> \textbf{(A)}\ 1\qquad\textbf{(B)}\ 2\qquad\textbf{(C)}\ 3\qquad\textbf{(D)}\ 4\qquad\textbf{(E)}\ 5 </math>
 
<math> \textbf{(A)}\ 1\qquad\textbf{(B)}\ 2\qquad\textbf{(C)}\ 3\qquad\textbf{(D)}\ 4\qquad\textbf{(E)}\ 5 </math>
 +
 +
==Solution==
 +
 +
==See Also==
 +
 +
{{AMC10 box|year=2014|ab=A|num-b=8|num-a=10}}
 +
{{MAA Notice}}

Revision as of 22:13, 6 February 2014

Problem

The two legs of a right triangle, which are altitudes, have lengths $2\sqrt3$ and $6$. How long is the third altitude of the triangle?

$\textbf{(A)}\ 1\qquad\textbf{(B)}\ 2\qquad\textbf{(C)}\ 3\qquad\textbf{(D)}\ 4\qquad\textbf{(E)}\ 5$

Solution

See Also

2014 AMC 10A (ProblemsAnswer KeyResources)
Preceded by
Problem 8
Followed by
Problem 10
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25
All AMC 10 Problems and Solutions

The problems on this page are copyrighted by the Mathematical Association of America's American Mathematics Competitions. AMC logo.png