Difference between revisions of "2013 AMC 8 Problems/Problem 17"

(Solution)
(Added extra solution.)
Line 6: Line 6:
 
==Solution==
 
==Solution==
 
The mean of these numbers is <math>\frac{\frac{2013}{3}}{2}=\frac{671}{2}=335.5</math>. Therefore the numbers are <math>333, 334, 335, 336, 337, 338</math>, so the answer is <math>\boxed{\textbf{(B)}\ 338}</math>
 
The mean of these numbers is <math>\frac{\frac{2013}{3}}{2}=\frac{671}{2}=335.5</math>. Therefore the numbers are <math>333, 334, 335, 336, 337, 338</math>, so the answer is <math>\boxed{\textbf{(B)}\ 338}</math>
 +
 +
==Alternate Algebraic Solution==
 +
Let the <math>4^{\text{th}}</math> number be <math>x</math>. Then our desired number is <math>x+2</math>.
 +
 +
Our integers are <math>x-3,x-2,x-1,x,x+1,x+2</math>, so we have that <math>6x-3 = 2013 \implies x = \frac{2016}{6} = 336 \implies x+2 = \boxed{\textbf{(B)}\ 338}</math>.
  
 
==See Also==
 
==See Also==
 
{{AMC8 box|year=2013|num-b=16|num-a=18}}
 
{{AMC8 box|year=2013|num-b=16|num-a=18}}
 
{{MAA Notice}}
 
{{MAA Notice}}

Revision as of 12:42, 27 November 2013

Problem

The sum of six consecutive positive integers is 2013. What is the largest of these six integers?

$\textbf{(A)}\ 335 \qquad \textbf{(B)}\ 338 \qquad \textbf{(C)}\ 340 \qquad \textbf{(D)}\ 345 \qquad \textbf{(E)}\ 350$

Solution

The mean of these numbers is $\frac{\frac{2013}{3}}{2}=\frac{671}{2}=335.5$. Therefore the numbers are $333, 334, 335, 336, 337, 338$, so the answer is $\boxed{\textbf{(B)}\ 338}$

Alternate Algebraic Solution

Let the $4^{\text{th}}$ number be $x$. Then our desired number is $x+2$.

Our integers are $x-3,x-2,x-1,x,x+1,x+2$, so we have that $6x-3 = 2013 \implies x = \frac{2016}{6} = 336 \implies x+2 = \boxed{\textbf{(B)}\ 338}$.

See Also

2013 AMC 8 (ProblemsAnswer KeyResources)
Preceded by
Problem 16
Followed by
Problem 18
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25
All AJHSME/AMC 8 Problems and Solutions

The problems on this page are copyrighted by the Mathematical Association of America's American Mathematics Competitions. AMC logo.png