Difference between revisions of "2013 AMC 8 Problems/Problem 16"

(Solution)
(Problem)
Line 1: Line 1:
 
==Problem==
 
==Problem==
 +
A number of students from Fibonacci Middle School are taking part in a community service project. The ratio of <math>8^\text{th}</math>-graders to <math>6^\text{th}</math>-graders is <math>5:3</math>, and the the ratio of <math>8^\text{th}</math>-graders to <math>7^\text{th}</math>-graders is <math>8:5</math>. What is the smallest number of students that could be participating in the project?
 +
 +
<math>\textbf{(A)}\ 16 \qquad \textbf{(B)}\ 40 \qquad \textbf{(C)}\ 55 \qquad \textbf{(D)}\ 79 \qquad \textbf{(E)}\ 89</math>
  
 
==Solution==
 
==Solution==

Revision as of 08:28, 27 November 2013

Problem

A number of students from Fibonacci Middle School are taking part in a community service project. The ratio of $8^\text{th}$-graders to $6^\text{th}$-graders is $5:3$, and the the ratio of $8^\text{th}$-graders to $7^\text{th}$-graders is $8:5$. What is the smallest number of students that could be participating in the project?

$\textbf{(A)}\ 16 \qquad \textbf{(B)}\ 40 \qquad \textbf{(C)}\ 55 \qquad \textbf{(D)}\ 79 \qquad \textbf{(E)}\ 89$

Solution

The number of 8th graders has to be a multiple of 8 and 5, so assume it is 40. Then there are $40*\frac{3}{5}=24$ 6th graders and $40*\frac{5}{8}=25$ 7th graders. The numbers of students is $40+24+25=\boxed{\textbf{(E)}\ 89}$

See Also

2013 AMC 8 (ProblemsAnswer KeyResources)
Preceded by
Problem 15
Followed by
Problem 17
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25
All AJHSME/AMC 8 Problems and Solutions

The problems on this page are copyrighted by the Mathematical Association of America's American Mathematics Competitions. AMC logo.png