Difference between revisions of "1962 AHSME Problems/Problem 1"
(→Solution) |
(→Solution) |
||
Line 10: | Line 10: | ||
<math> \dfrac{1^{4y-1}}{5^{-1}+3^{-1}}=\dfrac{1}{5^{-1}+3^{-1}}=\dfrac{1}{\dfrac{1}{5}+\dfrac{1}{3}}=\dfrac{1}{\dfrac{8}{15}}=\dfrac{15}{8} </math>. | <math> \dfrac{1^{4y-1}}{5^{-1}+3^{-1}}=\dfrac{1}{5^{-1}+3^{-1}}=\dfrac{1}{\dfrac{1}{5}+\dfrac{1}{3}}=\dfrac{1}{\dfrac{8}{15}}=\dfrac{15}{8} </math>. | ||
− | Thus our answer is <math>\textbf{(D)}\ \frac{15}{8}</math>. | + | Thus our answer is <math>\boxed{\textbf{(D)}\ \frac{15}{8}}</math>. |
==See Also== | ==See Also== | ||
[[Category:Introductory Algebra Problems]] | [[Category:Introductory Algebra Problems]] | ||
{{MAA Notice}} | {{MAA Notice}} |
Revision as of 23:07, 9 November 2013
Problem
The expression is equal to:
Solution
We simplify the expression to yield:
.
Thus our answer is .
See Also
The problems on this page are copyrighted by the Mathematical Association of America's American Mathematics Competitions.