Difference between revisions of "1962 AHSME Problems/Problem 23"
(Created page with "==Problem== In triangle <math>ABC</math>, <math>CD</math> is the altitude to <math>AB</math> and <math>AE</math> is the altitude to <math>BC</math>. If the lengths of <math>AB</m...") |
(→Problem) |
||
Line 4: | Line 4: | ||
<math>\textbf{(A)}\ \text{not determined by the information given} \qquad</math> | <math>\textbf{(A)}\ \text{not determined by the information given} \qquad</math> | ||
+ | |||
<math>\textbf{(B)}\ \text{determined only if A is an acute angle} \qquad</math> | <math>\textbf{(B)}\ \text{determined only if A is an acute angle} \qquad</math> | ||
+ | |||
<math>\textbf{(C)}\ \text{determined only if B is an acute angle} \qquad</math> | <math>\textbf{(C)}\ \text{determined only if B is an acute angle} \qquad</math> | ||
+ | |||
<math>\textbf{(D)}\ \text{determined only in ABC is an acute triangle} \qquad</math> | <math>\textbf{(D)}\ \text{determined only in ABC is an acute triangle} \qquad</math> | ||
+ | |||
<math>\textbf{(E)}\ \text{none of these is correct} </math> | <math>\textbf{(E)}\ \text{none of these is correct} </math> | ||
==Solution== | ==Solution== | ||
"Unsolved" | "Unsolved" |
Revision as of 21:56, 9 November 2013
Problem
In triangle , is the altitude to and is the altitude to . If the lengths of , , and are known, the length of is:
Solution
"Unsolved"