Difference between revisions of "1990 AHSME Problems/Problem 1"
(→Solution) |
m (Changed the value under the square root symbol from x to x^2.) |
||
Line 8: | Line 8: | ||
Cross-multiplying leaves | Cross-multiplying leaves | ||
− | <math><cmath> \begin{align*}\dfrac{x^2}{8} &= 8\\ x^2 &= 64\\ \sqrt{x} &= \sqrt{64}\\ x &= \pm 8\end{align*} </cmath></math> | + | <math><cmath> \begin{align*}\dfrac{x^2}{8} &= 8\\ x^2 &= 64\\ \sqrt{x^2} &= \sqrt{64}\\ x &= \pm 8\end{align*} </cmath></math> |
So the answer is <math>\boxed{\text{(E)} \, \pm 8}</math>. | So the answer is <math>\boxed{\text{(E)} \, \pm 8}</math>. | ||
{{MAA Notice}} | {{MAA Notice}} |
Revision as of 03:03, 4 November 2013
Problem
If , then
Solution
Cross-multiplying leaves
$<cmath> \begin{align*}\dfrac{x^2}{8} &= 8\\ x^2 &= 64\\ \sqrt{x^2} &= \sqrt{64}\\ x &= \pm 8\end{align*} </cmath>$ (Error compiling LaTeX. Unknown error_msg)
So the answer is . The problems on this page are copyrighted by the Mathematical Association of America's American Mathematics Competitions.