Difference between revisions of "2011 IMO Problems/Problem 2"

m (LaTeX-ify)
Line 1: Line 1:
 
Let <math>\mathcal{S}</math> be a finite set of at least two points in the plane. Assume that no three points of <math>\mathcal S</math> are collinear. A ''windmill'' is a process that starts with a line <math>\ell</math> going through a single point <math>P \in \mathcal S</math>. The line rotates clockwise about the ''pivot'' <math>P</math> until the first time that the line meets some other point belonging to <math>\mathcal S</math>. This point, <math>Q</math>, takes over as the new pivot, and the line now rotates clockwise about <math>Q</math>, until it next meets a point of <math>\mathcal S</math>. This process continues indefinitely.  
 
Let <math>\mathcal{S}</math> be a finite set of at least two points in the plane. Assume that no three points of <math>\mathcal S</math> are collinear. A ''windmill'' is a process that starts with a line <math>\ell</math> going through a single point <math>P \in \mathcal S</math>. The line rotates clockwise about the ''pivot'' <math>P</math> until the first time that the line meets some other point belonging to <math>\mathcal S</math>. This point, <math>Q</math>, takes over as the new pivot, and the line now rotates clockwise about <math>Q</math>, until it next meets a point of <math>\mathcal S</math>. This process continues indefinitely.  
 
Show that we can choose a point <math>P</math> in <math>\mathcal S</math> and a line <math>\ell</math> going through <math>P</math> such that the resulting windmill uses each point of <math>\mathcal S</math> as a pivot infinitely many times.
 
Show that we can choose a point <math>P</math> in <math>\mathcal S</math> and a line <math>\ell</math> going through <math>P</math> such that the resulting windmill uses each point of <math>\mathcal S</math> as a pivot infinitely many times.
 +
 +
==Solution==
 +
{{solution}}
 +
 +
==See Also==
 +
*[[IMO Problems and Solutions]]

Revision as of 23:10, 10 October 2013

Let $\mathcal{S}$ be a finite set of at least two points in the plane. Assume that no three points of $\mathcal S$ are collinear. A windmill is a process that starts with a line $\ell$ going through a single point $P \in \mathcal S$. The line rotates clockwise about the pivot $P$ until the first time that the line meets some other point belonging to $\mathcal S$. This point, $Q$, takes over as the new pivot, and the line now rotates clockwise about $Q$, until it next meets a point of $\mathcal S$. This process continues indefinitely. Show that we can choose a point $P$ in $\mathcal S$ and a line $\ell$ going through $P$ such that the resulting windmill uses each point of $\mathcal S$ as a pivot infinitely many times.

Solution

This problem needs a solution. If you have a solution for it, please help us out by adding it.

See Also