Difference between revisions of "Carleman's Inequality"
(expand) |
(→Proof) |
||
Line 12: | Line 12: | ||
<cmath> \sum_{k=1}^\infty \frac{(c_1a_1 \dotsm c_ka_k)^{1/k}}{k+1} \le \sum_{k=1}^{\infty} \sum_{j=1}^k c_ja_j \frac{1}{k(k+1)} = \sum_{j=1}^\infty \sum_{k=j}^{\infty} c_ja_j \frac{1}{k(k+1)} . </cmath> | <cmath> \sum_{k=1}^\infty \frac{(c_1a_1 \dotsm c_ka_k)^{1/k}}{k+1} \le \sum_{k=1}^{\infty} \sum_{j=1}^k c_ja_j \frac{1}{k(k+1)} = \sum_{j=1}^\infty \sum_{k=j}^{\infty} c_ja_j \frac{1}{k(k+1)} . </cmath> | ||
But <math>\frac{1}{k(k+1)} = \frac{1}{k} - \frac{1}{k+1}</math>, so for any integer <math>j</math>, | But <math>\frac{1}{k(k+1)} = \frac{1}{k} - \frac{1}{k+1}</math>, so for any integer <math>j</math>, | ||
− | <cmath> \sum_{k=j}^\infty \frac{1}{k(k+1)} = \sum_{k=j}^{\infty} \frac{1}{ | + | <cmath> \sum_{k=j}^\infty \frac{1}{k(k+1)} = \sum_{k=j}^{\infty} \frac{1}{k} - \frac{1}{k+1} = \lim_{N\to \infty} \left( \frac{1}{j} - \frac{1}{N+1} \right) = \frac{1}{j} . </cmath> |
Therefore | Therefore | ||
− | <cmath> \sum_{j=1}^{\infty} \sum_{k=j}^{\infty} | + | <cmath> \sum_{j=1}^{\infty} \sum_{k=j}^{\infty} c_j a_j \frac{1}{k(k+1)} = \sum_{j=1}^\infty \left( 1 + \frac{1}{j} \right)^j a_k . </cmath> |
Since <math>\left( 1 + \frac{1}{j} \right)^j< e</math> for all integers <math>j</math>, the desired inequality holds. <math>\blacksquare</math> | Since <math>\left( 1 + \frac{1}{j} \right)^j< e</math> for all integers <math>j</math>, the desired inequality holds. <math>\blacksquare</math> | ||
Revision as of 23:56, 2 September 2013
Carleman's Inequality states that for nonnegative real numbers , unless all the are equal to zero.
Proof
Define . Then for all positive integers , Thus Now, by AM-GM, But , so for any integer , Therefore Since for all integers , the desired inequality holds.
See also
References
- Steele, J. M., The Cauchy-Schwarz Master Class, Cambridge University Press, ISBN 0-521-54677-X.