Difference between revisions of "2006 AIME I Problems/Problem 12"
m |
(Added solution) |
||
Line 1: | Line 1: | ||
== Problem == | == Problem == | ||
− | Find the sum of the values of <math> x </math> such that <math> \cos^3 3x+ \cos^3 5x = 8 \cos^3 4x \cos^3 x | + | Find the sum of the values of <math> x </math> such that <math> \cos^3 3x+ \cos^3 5x = 8 \cos^3 4x \cos^3 x </math>, where <math> x </math> is measured in degrees and <math> 100< x< 200. </math> |
Line 7: | Line 7: | ||
== Solution == | == Solution == | ||
+ | <math> \cos^3 3x+ \cos^3 5x = 8 \cos^3 4x \cos^3 x </math> | ||
+ | <math> \cos^3 (4x-x)+ \cos^3 (4x+x) = 8 \cos^3 4x \cos^3 x </math> | ||
+ | Using the sum and difference formulas for the cosine function: | ||
+ | |||
+ | <math> ( \cos 4x \cos x + \sin 4x \sin x )^3 + ( \cos 4x \cos x - \sin 4x \sin x )^3 = 8 \cos^3 4x \cos^3 x </math> | ||
+ | |||
+ | Expanding the expression: | ||
+ | |||
+ | <math> ( \cos^3 4x \cos^3 x + 3 \cos^2 4x \cos^2 x \sin 4x \sin x + 3 \cos 4x \cos x \sin^2 4x \sin^2 x + \sin^3 4x \sin^3 x )</math> | ||
+ | |||
+ | <math>+</math> | ||
+ | |||
+ | <math>( \cos^3 4x \cos^3 x - 3 \cos^2 4x \cos^2 x \sin 4x \sin x + 3 \cos 4x \cos x \sin^2 4x \sin^2 x - \sin^3 4x \sin^3 x )</math> | ||
+ | |||
+ | <math>=</math> | ||
+ | |||
+ | <math> 8 \cos^3 4x \cos^3 x </math> | ||
+ | |||
+ | Combining like terms: | ||
+ | |||
+ | <math> 2 \cos^3 4x \cos^3 x + 6 \cos 4x \cos x \sin^2 4x \sin^2 x = 8 \cos^3 4x \cos^3 x</math> | ||
+ | |||
+ | <math> -6 \cos^3 4x \cos^3 x + 6 \cos 4x \cos x \sin^2 4x \sin^2 x = 0 </math> | ||
+ | |||
+ | Factoring <math> -6 \cos 4x \cos x </math>: | ||
+ | |||
+ | <math> ( -6 \cos 4x \cos x ) ( \cos^2 4x \cos^2 x - \sin^2 4x \sin^2 x )= 0 </math> | ||
+ | |||
+ | Using the difference of squares factorization: | ||
+ | |||
+ | <math> ( -6 \cos 4x \cos x ) ( \cos 4x \cos x + \sin 4x \sin x ) ( \cos 4x \cos x - \sin 4x \sin x )= 0 </math> | ||
+ | |||
+ | Using the sum and difference formulas for cosine in reverse: | ||
+ | |||
+ | <math> ( -6 \cos 4x \cos x ) (\cos (4x-x)) ( \cos (4x+x))= 0 </math> | ||
+ | |||
+ | <math> -6 \cos 4x \cos x \cos 3x \cos 5x = 0 </math> | ||
+ | |||
+ | Setting each non-constant factor equal to 0: | ||
+ | |||
+ | <math> \cos x = 0 </math> | ||
+ | |||
+ | <math> x = 90, 270, .... </math> | ||
+ | |||
+ | <math> \cos 3x = 0 </math> | ||
+ | |||
+ | <math> 3x = 90, 270, 450, 630, .... </math> | ||
+ | |||
+ | <math> x = 30, 90, 150, 210, .... </math> | ||
+ | |||
+ | <math> \cos 4x = 0 </math> | ||
+ | |||
+ | <math> 4x = 90, 270, 450, 630, 810, .... </math> | ||
+ | |||
+ | <math> x = 22.5, 67.5, 112.5, 157.5, 202.5, .... </math> | ||
+ | |||
+ | <math> \cos 5x = 0 </math> | ||
+ | |||
+ | <math> 5x = 90, 270, 450, 630, 810, 990, 1170, .... </math> | ||
+ | |||
+ | <math> x = 18, 54, 90, 126, 162, 198, 234, .... </math> | ||
+ | |||
+ | So the sum of the values of <math>x</math> where <math> 100< x< 200 </math> is: | ||
+ | |||
+ | <math> 112.5 + 126 + 150 + 157.5 + 162 + 198 = 906 </math> | ||
+ | |||
+ | --[[User:Xantos C. Guin|Xantos C. Guin]] 21:41, 30 June 2006 (EDT) | ||
== See also == | == See also == | ||
* [[2006 AIME I Problems]] | * [[2006 AIME I Problems]] |
Revision as of 20:41, 30 June 2006
Problem
Find the sum of the values of such that , where is measured in degrees and
Solution
Using the sum and difference formulas for the cosine function:
Expanding the expression:
Combining like terms:
Factoring :
Using the difference of squares factorization:
Using the sum and difference formulas for cosine in reverse:
Setting each non-constant factor equal to 0:
So the sum of the values of where is:
--Xantos C. Guin 21:41, 30 June 2006 (EDT)