Difference between revisions of "2010 AIME II Problems/Problem 15"
Zhuangzhuang (talk | contribs) m (→Solution.) |
|||
Line 12: | Line 12: | ||
Source: [http://www.artofproblemsolving.com/Forum/viewtopic.php?p=1831745#p1831745] by Zhero | Source: [http://www.artofproblemsolving.com/Forum/viewtopic.php?p=1831745#p1831745] by Zhero | ||
+ | {{MAA Notice}} |
Revision as of 22:47, 4 July 2013
Problem 15
In triangle , , , and . Points and lie on with and . Points and lie on B with and . Let be the point, other than , of intersection of the circumcircles of and . Ray meets at . The ratio can be written in the form , where and are relatively prime positive integers. Find .
Solution
Let . since . Since quadrilateral is cyclic, and , yielding and . Multiplying these together yields .
. Also, is the center of spiral similarity of segments and , so . Therefore, , which can easily be computed by the angle bisector theorem to be . It follows that , giving us an answer of .
Note: Spiral similarities may sound complex, but they're really not. The fact that is really just a result of simple angle chasing.
Source: [1] by Zhero The problems on this page are copyrighted by the Mathematical Association of America's American Mathematics Competitions.