Difference between revisions of "1997 USAMO Problems/Problem 2"

(Solution)
Line 16: Line 16:
  
 
[[Category:Olympiad Geometry Problems]]
 
[[Category:Olympiad Geometry Problems]]
 +
{{MAA Notice}}

Revision as of 12:33, 4 July 2013

Problem

$\triangle ABC$ is a triangle. Take points $D, E, F$ on the perpendicular bisectors of $BC, CA, AB$ respectively. Show that the lines through $A, B, C$ perpendicular to $EF, FD, DE$ respectively are concurrent.

Solution

Alternate solutions are always welcome. If you have a different, elegant solution to this problem, please add it to this page.

Let the perpendicular from A meet FE at A'. Define B' and C' similiarly. By Carnot's Theorem, The three lines are concurrent if

$FA'^2-EA'^2+EC'^2-DC'^2+DB'^2-FB'^2 = AF^2-AE^2+CE^2-CD^2+BD^2-BF^2 = 0$

But this is clearly true, since D lies on the perpendicular bisector of BC, BD = DC.

QED

See Also

1997 USAMO (ProblemsResources)
Preceded by
Problem 1
Followed by
Problem 3
1 2 3 4 5 6
All USAMO Problems and Solutions

The problems on this page are copyrighted by the Mathematical Association of America's American Mathematics Competitions. AMC logo.png