Difference between revisions of "2011 USAJMO Problems/Problem 5"
(→Solution) |
|||
Line 50: | Line 50: | ||
Since quadrilateral <math>BOMP</math> is cyclic, <math>\angle BMP = \angle BOP</math>. Triangles <math>BOP</math> and <math>DOP</math> are congruent, so <math>\angle BOP = \angle BOD/2 = \angle BED</math>, so <math>\angle BMP = \angle BED</math>. Since <math>AC</math> and <math>DE</math> are parallel, <math>M</math> lies on <math>BE</math>. | Since quadrilateral <math>BOMP</math> is cyclic, <math>\angle BMP = \angle BOP</math>. Triangles <math>BOP</math> and <math>DOP</math> are congruent, so <math>\angle BOP = \angle BOD/2 = \angle BED</math>, so <math>\angle BMP = \angle BED</math>. Since <math>AC</math> and <math>DE</math> are parallel, <math>M</math> lies on <math>BE</math>. | ||
+ | {{MAA Notice}} |
Revision as of 12:20, 4 July 2013
Problem
Points , , , , lie on a circle and point lies outside the circle. The given points are such that (i) lines and are tangent to , (ii) , , are collinear, and (iii) . Prove that bisects .
Solution
Let be the center of the circle, and let be the midpoint of . Let denote the circle with diameter . Since , , , and all lie on .
Since quadrilateral is cyclic, . Triangles and are congruent, so , so . Since and are parallel, lies on . The problems on this page are copyrighted by the Mathematical Association of America's American Mathematics Competitions.