Difference between revisions of "2006 AMC 10B Problems/Problem 20"
(Undo revision 46842 by Rubberballs (talk)) |
|||
Line 43: | Line 43: | ||
[[Category:Introductory Algebra Problems]] | [[Category:Introductory Algebra Problems]] | ||
[[Category:Introductory Geometry Problems]] | [[Category:Introductory Geometry Problems]] | ||
+ | {{MAA Notice}} |
Revision as of 11:18, 4 July 2013
Problem
In rectangle , we have , , , for some integer . What is the area of rectangle ?
Solution
Solution 1
Let the slope of be and the slope of be .
Since and form a right angle:
Using the distance formula:
Therefore the area of rectangle is
Solution 2
This solution is the same as Solution 1 up to the point where we find that .
We build right triangles so we can use the Pythagorean Theorem. The triangle with hypotenuse has legs and , while the triangle with hypotenuse has legs and . Aha! The two triangles are similar, with one triangle having side lengths times the other!
Let . Then from our reasoning above, we have . Finally, the area of the rectangle is .
See Also
2006 AMC 10B (Problems • Answer Key • Resources) | ||
Preceded by Problem 19 |
Followed by Problem 21 | |
1 • 2 • 3 • 4 • 5 • 6 • 7 • 8 • 9 • 10 • 11 • 12 • 13 • 14 • 15 • 16 • 17 • 18 • 19 • 20 • 21 • 22 • 23 • 24 • 25 | ||
All AMC 10 Problems and Solutions |
The problems on this page are copyrighted by the Mathematical Association of America's American Mathematics Competitions.