Difference between revisions of "2006 AIME I Problems/Problem 15"
m |
|||
Line 1: | Line 1: | ||
== Problem == | == Problem == | ||
Given that a sequence satisfies <math> x_0=0 </math> and <math> |x_k|=|x_{k-1}+3| </math> for all integers <math> k\ge 1, </math> find the minimum possible value of <math> |x_1+x_2+\cdots+x_{2006}|. </math> | Given that a sequence satisfies <math> x_0=0 </math> and <math> |x_k|=|x_{k-1}+3| </math> for all integers <math> k\ge 1, </math> find the minimum possible value of <math> |x_1+x_2+\cdots+x_{2006}|. </math> | ||
+ | |||
+ | |||
+ | |||
+ | |||
== Solution == | == Solution == | ||
+ | |||
+ | |||
+ | |||
== See also == | == See also == | ||
− | * [[2006 AIME I]] | + | * [[2006 AIME I Problems]] |
Revision as of 11:15, 30 June 2006
Problem
Given that a sequence satisfies and for all integers find the minimum possible value of