Difference between revisions of "2007 AMC 10A Problems/Problem 23"
(soln) |
|||
Line 13: | Line 13: | ||
[[Category:Introductory Number Theory Problems]] | [[Category:Introductory Number Theory Problems]] | ||
+ | {{MAA Notice}} |
Revision as of 10:51, 4 July 2013
Problem
How many ordered pairs of positive integers, with , have the property that their squares differ by ?
Solution
For every two factors , we have . Since , , from which it follows that the number of ordered pairs is given by the number of ordered pairs . There are factors of , which give us six pairs . However, since are positive integers, we also need that are positive integers, so and must have the same parity. Thus we exclude the factors , and we are left with four pairs .
See also
2007 AMC 10A (Problems • Answer Key • Resources) | ||
Preceded by Problem 22 |
Followed by Problem 24 | |
1 • 2 • 3 • 4 • 5 • 6 • 7 • 8 • 9 • 10 • 11 • 12 • 13 • 14 • 15 • 16 • 17 • 18 • 19 • 20 • 21 • 22 • 23 • 24 • 25 | ||
All AMC 10 Problems and Solutions |
The problems on this page are copyrighted by the Mathematical Association of America's American Mathematics Competitions.