Difference between revisions of "2004 AMC 12B Problems/Problem 24"
(→Solution) |
(→See also) |
||
Line 35: | Line 35: | ||
[[Category:Intermediate Geometry Problems]] | [[Category:Intermediate Geometry Problems]] | ||
[[Category:Intermediate Trigonometry Problems]] | [[Category:Intermediate Trigonometry Problems]] | ||
+ | {{MAA Notice}} |
Latest revision as of 18:59, 3 July 2013
Problem
In , , and is an altitude. Point is on the extension of such that . The values of , , and form a geometric progression, and the values of form an arithmetic progression. What is the area of ?
Solution
Let . Then the first condition tells us that and multiplying out gives us . Since , we have .
The second condition tells us that . Expanding, we have . Evidently , so we get .
Now and . Thus, .
See also
2004 AMC 12B (Problems • Answer Key • Resources) | |
Preceded by Problem 23 |
Followed by Problem 25 |
1 • 2 • 3 • 4 • 5 • 6 • 7 • 8 • 9 • 10 • 11 • 12 • 13 • 14 • 15 • 16 • 17 • 18 • 19 • 20 • 21 • 22 • 23 • 24 • 25 | |
All AMC 12 Problems and Solutions |
The problems on this page are copyrighted by the Mathematical Association of America's American Mathematics Competitions.