Difference between revisions of "1979 USAMO Problems/Problem 3"

m
Line 9: Line 9:
 
==See Also==
 
==See Also==
 
{{USAMO box|year=1979|num-b=2|num-a=4}}
 
{{USAMO box|year=1979|num-b=2|num-a=4}}
 +
{{MAA Notice}}
  
 
[[Category:Olympiad Combinatorics Problems]]
 
[[Category:Olympiad Combinatorics Problems]]

Revision as of 18:08, 3 July 2013

Problem

$a_1, a_2, \ldots, a_n$ is an arbitrary sequence of positive integers. A member of the sequence is picked at random. Its value is $a$. Another member is picked at random, independently of the first. Its value is $b$. Then a third value, $c$. Show that the probability that $a + b +c$ is divisible by $3$ is at least $\frac14$.

Solution

This problem needs a solution. If you have a solution for it, please help us out by adding it.

See Also

1979 USAMO (ProblemsResources)
Preceded by
Problem 2
Followed by
Problem 4
1 2 3 4 5
All USAMO Problems and Solutions

The problems on this page are copyrighted by the Mathematical Association of America's American Mathematics Competitions. AMC logo.png