Difference between revisions of "1950 AHSME Problems/Problem 20"

(Solution 1)
(Solution 2)
Line 12: Line 12:
 
===Solution 2===
 
===Solution 2===
  
Notice that <math>1</math> is a zero of <math>x^{13} - 1</math>. By the factor theorem, since <math>1</math> is a zero, then <math>x-1</math> is a factor of <math>x^{13} - 1</math>, and when something is divided by a factor, the remainder is <math>\textbf{(C)}0</math>
+
By the remainder theorem, the remainder is equal to the expression <math>x^{13}+1</math> when <math>x=1.</math> This gives the answer of <math> \boxed{\textbf{(A)}\ 2.} </math>
  
 
==See Also==
 
==See Also==

Revision as of 16:51, 11 June 2013

Problem

When $x^{13}+1$ is divided by $x-1$, the remainder is:

$\textbf{(A)}\ 1\qquad\textbf{(B)}\ -1\qquad\textbf{(C)}\ 0\qquad\textbf{(D)}\ 2\qquad\textbf{(E)}\ \text{None of these answers}$

Solution

Solution 1

Use synthetic division, and get that the remainder is $\boxed{\mathrm{(D)}\ 2.}$

Solution 2

By the remainder theorem, the remainder is equal to the expression $x^{13}+1$ when $x=1.$ This gives the answer of $\boxed{\textbf{(A)}\ 2.}$

See Also

1950 AHSC (ProblemsAnswer KeyResources)
Preceded by
Problem 19
Followed by
Problem 21
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50
All AHSME Problems and Solutions