Difference between revisions of "Routh's Theorem"
m (minor) |
m (typo) |
||
Line 1: | Line 1: | ||
− | In [[triangle]] <math>ABC</math>, <math>D</math>, <math>E</math> and <math>F</math> are points on sides <math>BC</math>, <math>AC</math>, and <math>AB</math>, respectively. Let <math>r=\frac{AF}{AB}</math>, <math>s=\frac{BD}{BC}</math>, and <math>=\frac{CE}{CA}</math>. Let <math>G</math> be the intersection of <math>AD</math> and <math>BC</math>, <math>H</math> be the intersection of <math>BE</math> and <math>CF</math>, and <math>I</math> be the intersection of <math>CF</math> and <math>AD</math>. Then, '''Routh's Theorem''' states that | + | In [[triangle]] <math>ABC</math>, <math>D</math>, <math>E</math> and <math>F</math> are points on sides <math>BC</math>, <math>AC</math>, and <math>AB</math>, respectively. Let <math>r=\frac{AF}{AB}</math>, <math>s=\frac{BD}{BC}</math>, and <math>t=\frac{CE}{CA}</math>. Let <math>G</math> be the intersection of <math>AD</math> and <math>BC</math>, <math>H</math> be the intersection of <math>BE</math> and <math>CF</math>, and <math>I</math> be the intersection of <math>CF</math> and <math>AD</math>. Then, '''Routh's Theorem''' states that |
<cmath>[GHI]=\dfrac{(rst-1)^2}{(rs+r+1)(st+s+1)(tr+t+1)}[ABC]</cmath> | <cmath>[GHI]=\dfrac{(rst-1)^2}{(rs+r+1)(st+s+1)(tr+t+1)}[ABC]</cmath> |
Revision as of 22:29, 21 May 2013
In triangle ,
,
and
are points on sides
,
, and
, respectively. Let
,
, and
. Let
be the intersection of
and
,
be the intersection of
and
, and
be the intersection of
and
. Then, Routh's Theorem states that
Proof
This article is a stub. Help us out by expanding it.