Difference between revisions of "2013 USAMO Problems/Problem 1"
Countingkg (talk | contribs) |
|||
Line 1: | Line 1: | ||
+ | ==Problem== | ||
In triangle <math>ABC</math>, points <math>P,Q,R</math> lie on sides <math>BC,CA,AB</math> respectively. Let <math>\omega_A</math>, <math>\omega_B</math>, <math>\omega_C</math> denote the circumcircles of triangles <math>AQR</math>, <math>BRP</math>, <math>CPQ</math>, respectively. Given the fact that segment <math>AP</math> intersects <math>\omega_A</math>, <math>\omega_B</math>, <math>\omega_C</math> again at <math>X,Y,Z</math> respectively, prove that <math>YX/XZ=BP/PC</math> | In triangle <math>ABC</math>, points <math>P,Q,R</math> lie on sides <math>BC,CA,AB</math> respectively. Let <math>\omega_A</math>, <math>\omega_B</math>, <math>\omega_C</math> denote the circumcircles of triangles <math>AQR</math>, <math>BRP</math>, <math>CPQ</math>, respectively. Given the fact that segment <math>AP</math> intersects <math>\omega_A</math>, <math>\omega_B</math>, <math>\omega_C</math> again at <math>X,Y,Z</math> respectively, prove that <math>YX/XZ=BP/PC</math> | ||
+ | |||
+ | ==Solution 1== | ||
+ | |||
+ | <asy> | ||
+ | /* DRAGON 0.0.9.6 | ||
+ | Homemade Script by v_Enhance. */ | ||
+ | import olympiad; | ||
+ | import cse5; | ||
+ | size(11cm); | ||
+ | real lsf=0.8000; | ||
+ | real lisf=2011.0; | ||
+ | defaultpen(fontsize(10pt)); | ||
+ | /* Initialize Objects */ | ||
+ | pair A = (-1.0, 3.0); | ||
+ | pair B = (-3.0, -3.0); | ||
+ | pair C = (4.0, -3.0); | ||
+ | pair P = (-0.6698198198198195, -3.0); | ||
+ | pair Q = (1.1406465288818244, 0.43122416534181074); | ||
+ | pair R = (-1.6269590345062048, 1.119122896481385); | ||
+ | path w_A = circumcircle(A,Q,R); | ||
+ | path w_B = circumcircle(B,P,R); | ||
+ | path w_C = circumcircle(P,Q,C); | ||
+ | pair O_A = midpoint(relpoint(w_A, 0)--relpoint(w_A, 0.5)); | ||
+ | pair O_B = midpoint(relpoint(w_B, 0)--relpoint(w_B, 0.5)); | ||
+ | pair O_C = midpoint(relpoint(w_C, 0)--relpoint(w_C, 0.5)); | ||
+ | pair X = (2)*(foot(O_A,A,P))-A; | ||
+ | pair Y = (2)*(foot(O_B,A,P))-P; | ||
+ | pair Z = (2)*(foot(O_C,A,P))-P; | ||
+ | pair M = 2*foot(P,relpoint(O_B--O_C,0.5-10/lisf),relpoint(O_B--O_C,0.5+10/lisf))-P; | ||
+ | pair D = (2)*(foot(O_B,X,M))-M; | ||
+ | pair E = (2)*(foot(O_C,X,M))-M; | ||
+ | /* Draw objects */ | ||
+ | draw(A--B, rgb(0.6,0.6,0.0)); | ||
+ | draw(B--C, rgb(0.6,0.6,0.0)); | ||
+ | draw(C--A, rgb(0.6,0.6,0.0)); | ||
+ | draw(w_A, rgb(0.4,0.4,0.0)); | ||
+ | draw(w_B, rgb(0.4,0.4,0.0)); | ||
+ | draw(w_C, rgb(0.4,0.4,0.0)); | ||
+ | draw(A--P, rgb(0.0,0.2,0.4)); | ||
+ | draw(D--E, rgb(0.0,0.2,0.4)); | ||
+ | draw(P--D, rgb(0.0,0.2,0.4)); | ||
+ | draw(P--E, rgb(0.0,0.2,0.4)); | ||
+ | draw(P--M, rgb(0.4,0.2,0.0)); | ||
+ | draw(R--M, rgb(0.4,0.2,0.0)); | ||
+ | draw(Q--M, rgb(0.4,0.2,0.0)); | ||
+ | draw(B--M, rgb(0.0,0.2,0.4)); | ||
+ | draw(C--M, rgb(0.0,0.2,0.4)); | ||
+ | draw((abs(dot(unit(M-P),unit(B-P))) < 1/2011) ? rightanglemark(M,P,B) : anglemark(M,P,B), rgb(0.0,0.8,0.8)); | ||
+ | draw((abs(dot(unit(M-R),unit(A-R))) < 1/2011) ? rightanglemark(M,R,A) : anglemark(M,R,A), rgb(0.0,0.8,0.8)); | ||
+ | draw((abs(dot(unit(M-X),unit(A-X))) < 1/2011) ? rightanglemark(M,X,A) : anglemark(M,X,A), rgb(0.0,0.8,0.8)); | ||
+ | draw((abs(dot(unit(D-X),unit(P-X))) < 1/2011) ? rightanglemark(D,X,P) : anglemark(D,X,P), rgb(0.0,0.8,0.8)); | ||
+ | /* Place dots on each point */ | ||
+ | dot(A); | ||
+ | dot(B); | ||
+ | dot(C); | ||
+ | dot(P); | ||
+ | dot(Q); | ||
+ | dot(R); | ||
+ | dot(X); | ||
+ | dot(Y); | ||
+ | dot(Z); | ||
+ | dot(M); | ||
+ | dot(D); | ||
+ | dot(E); | ||
+ | /* Label points */ | ||
+ | label("$A$", A, lsf * dir(110)); | ||
+ | label("$B$", B, lsf * unit(B-M)); | ||
+ | label("$C$", C, lsf * unit(C-M)); | ||
+ | label("$P$", P, lsf * unit(P-M) * 1.8); | ||
+ | label("$Q$", Q, lsf * dir(90) * 1.6); | ||
+ | label("$R$", R, lsf * unit(R-M) * 2); | ||
+ | label("$X$", X, lsf * dir(-60) * 2); | ||
+ | label("$Y$", Y, lsf * dir(45)); | ||
+ | label("$Z$", Z, lsf * dir(5)); | ||
+ | label("$M$", M, lsf * dir(M-P)*2); | ||
+ | label("$D$", D, lsf * dir(150)); | ||
+ | label("$E$", E, lsf * dir(5));</asy> | ||
+ | |||
+ | In this solution, all lengths and angles are directed. | ||
+ | |||
+ | Firstly, it is easy to see by that <math>\omega_A, \omega_B, \omega_C</math> concur at a point <math>M</math>. Let <math>XM</math> meet <math>\omega_B, \omega_C</math> again at <math>D</math> and <math>E</math>, respectively. Then by Power of a Point, we have <cmath>XM \cdot XE = XZ \cdot XP \quad\text{and}\quad XM \cdot XD = XY \cdot XP</cmath> Thusly <cmath>\frac{XY}{XZ} = \frac{XD}{XE}</cmath> But we claim that <math>\triangle XDP \sim \triangle PBM</math>. Indeed, <cmath>\measuredangle XDP = \measuredangle MDP = \measuredangle MBP = - \measuredangle PBM</cmath> and <cmath>\measuredangle DXP = \measuredangle MXY = \measuredangle MXA = \measuredangle MRA = \measuredangle MRB = \measuredangle MPB = -\measuredangle BPM</cmath> | ||
+ | Therefore, <math>\frac{XD}{XP} = \frac{PB}{PM}</math>. Analogously we find that <math>\frac{XE}{XP} = \frac{PC}{PM}</math> and we are done. | ||
+ | |||
+ | courtesy v_enhance |
Revision as of 19:19, 11 May 2013
Problem
In triangle , points lie on sides respectively. Let , , denote the circumcircles of triangles , , , respectively. Given the fact that segment intersects , , again at respectively, prove that
Solution 1
In this solution, all lengths and angles are directed.
Firstly, it is easy to see by that concur at a point . Let meet again at and , respectively. Then by Power of a Point, we have Thusly But we claim that . Indeed, and Therefore, . Analogously we find that and we are done.
courtesy v_enhance