Difference between revisions of "1951 AHSME Problems/Problem 17"

(Solution)
(Solution)
Line 7: Line 7:
 
== Solution ==  
 
== Solution ==  
 
Notice that for any directly or inversely proportional values, it can be expressed as <math>\frac{x}{y}=k</math> or <math>xy=k</math>. Now we try to convert each into its standard form counterpart.
 
Notice that for any directly or inversely proportional values, it can be expressed as <math>\frac{x}{y}=k</math> or <math>xy=k</math>. Now we try to convert each into its standard form counterpart.
 +
 
<math> \textbf{(A)}\ x \plus{} y \equal{} 0\implies \frac{x}{y}=-1</math>
 
<math> \textbf{(A)}\ x \plus{} y \equal{} 0\implies \frac{x}{y}=-1</math>
  

Revision as of 21:52, 13 April 2013

Problem

Indicate in which one of the following equations $y$ is neither directly nor inversely proportional to $x$:

$\textbf{(A)}\ x \plus{} y \equal{} 0 \qquad\textbf{(B)}\ 3xy \equal{} 10 \qquad\textbf{(C)}\ x \equal{} 5y \qquad\textbf{(D)}\ 3x \plus{} y \equal{} 10$ (Error compiling LaTeX. Unknown error_msg) $\textbf{(E)}\ \frac {x}{y} \equal{} \sqrt {3}$ (Error compiling LaTeX. Unknown error_msg)

Solution

Notice that for any directly or inversely proportional values, it can be expressed as $\frac{x}{y}=k$ or $xy=k$. Now we try to convert each into its standard form counterpart.

$\textbf{(A)}\ x \plus{} y \equal{} 0\implies \frac{x}{y}=-1$ (Error compiling LaTeX. Unknown error_msg)

$\textbf{(B)}\ 3xy \equal{} 10\implies xy=\frac{10}{3}$ (Error compiling LaTeX. Unknown error_msg)

$\textbf{(C)}\ x \equal{} 5y\implies \frac{x}{y}=5$ (Error compiling LaTeX. Unknown error_msg)

$\textbf{(E)}\ \frac {x}{y} \equal{} \sqrt {3}\implies \frac {x}{y} \equal{} \sqrt {3}$ (Error compiling LaTeX. Unknown error_msg)

As we can see, the only equation without a "standard" form is $\textbf{(D)}$, so our answer is $\boxed{\textbf{(D)}\ 3x \plus{} y \equal{} 10}$ (Error compiling LaTeX. Unknown error_msg)

See Also

1951 AHSC (ProblemsAnswer KeyResources)
Preceded by
Problem 16
Followed by
Problem 18
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50
All AHSME Problems and Solutions