Difference between revisions of "2013 AIME II Problems/Problem 4"
(→Solution) |
|||
Line 2: | Line 2: | ||
==Solution== | ==Solution== | ||
− | The distance from point <math>A</math> to point <math>B</math> is <math> \sqrt{13}</math>. The vector that starts at point A and ends at point B is given by <math>B - A = (1, 2\sqrt{3})</math>. Since the center of an equilateral triangle, <math>P</math>, is also the intersection of the perpendicular bisectors of the sides of the triangle, we need first find the equation for the perpendicular bisector to <math>\overline{AB}</math>. The line perpendicular to <math>\overline{AB}</math> through the midpoint, <math>M = (\dfrac{3}{2},\sqrt{3})</math>, <math>\overline{AB}</math> can be parameterized by <math> (\dfrac{2\sqrt{3}}{\sqrt{13}}, \dfrac{-1}{\sqrt{13}}) t + (\dfrac{3}{2},\sqrt{3})</math>. At this point, it is useful to note that <math>\Delta BMP</math> is a 30-60-90 triangle with <math>\overline{MB}</math> measuring <math>\dfrac{\sqrt{13}}{2}</math>. This yields the lenght of <math>\overline{MP}</math> to be <math>\dfrac{\sqrt{13}}{2\sqrt{3}}</math>. Therefore, <math>P =( \dfrac{2\sqrt{3}}{\sqrt{13}},\dfrac{-1}{\sqrt{13}})(\dfrac{\sqrt{13}}{2\sqrt{3}}) + (\dfrac{3}{2},\sqrt{3}) = (\dfrac{5}{2}, \dfrac{5}{2\sqrt{3}})</math>. Therefore <math>xy = \dfrac{25\sqrt{3}}{12}</math> yielding an answer of <math> p + q + r = 25 + 3 + 12 = 040</math>. | + | The distance from point <math>A</math> to point <math>B</math> is <math> \sqrt{13}</math>. The vector that starts at point A and ends at point B is given by <math>B - A = (1, 2\sqrt{3})</math>. Since the center of an equilateral triangle, <math>P</math>, is also the intersection of the perpendicular bisectors of the sides of the triangle, we need first find the equation for the perpendicular bisector to <math>\overline{AB}</math>. The line perpendicular to <math>\overline{AB}</math> through the midpoint, <math>M = (\dfrac{3}{2},\sqrt{3})</math>, <math>\overline{AB}</math> can be parameterized by <math> (\dfrac{2\sqrt{3}}{\sqrt{13}}, \dfrac{-1}{\sqrt{13}}) t + (\dfrac{3}{2},\sqrt{3})</math>. At this point, it is useful to note that <math>\Delta BMP</math> is a 30-60-90 triangle with <math>\overline{MB}</math> measuring <math>\dfrac{\sqrt{13}}{2}</math>. This yields the lenght of <math>\overline{MP}</math> to be <math>\dfrac{\sqrt{13}}{2\sqrt{3}}</math>. Therefore, <math>P =( \dfrac{2\sqrt{3}}{\sqrt{13}},\dfrac{-1}{\sqrt{13}})(\dfrac{\sqrt{13}}{2\sqrt{3}}) + (\dfrac{3}{2},\sqrt{3}) = (\dfrac{5}{2}, \dfrac{5}{2\sqrt{3}})</math>. Therefore <math>xy = \dfrac{25\sqrt{3}}{12}</math> yielding an answer of <math> p + q + r = 25 + 3 + 12 = \boxed{040}</math>. |
Revision as of 14:49, 4 April 2013
In the Cartesian plane let and . Equilateral triangle is constructed so that lies in the first quadrant. Let be the center of . Then can be written as , where and are relatively prime positive integers and is an integer that is not divisible by the square of any prime. Find .
Solution
The distance from point to point is . The vector that starts at point A and ends at point B is given by . Since the center of an equilateral triangle, , is also the intersection of the perpendicular bisectors of the sides of the triangle, we need first find the equation for the perpendicular bisector to . The line perpendicular to through the midpoint, , can be parameterized by . At this point, it is useful to note that is a 30-60-90 triangle with measuring . This yields the lenght of to be . Therefore, . Therefore yielding an answer of .