Difference between revisions of "2013 AIME II Problems/Problem 15"
ProbaBillity (talk | contribs) (→Solution) |
ProbaBillity (talk | contribs) (→Solution) |
||
Line 11: | Line 11: | ||
Now let us analyze the given: | Now let us analyze the given: | ||
+ | |||
<math>\begin{align*} | <math>\begin{align*} | ||
\cos^2A + \cos^2B + 2\sinA\sinB\cosC &= 1-\sin^2A + 1-\sin^2B + 2\sinA\sinB\cosC \\ | \cos^2A + \cos^2B + 2\sinA\sinB\cosC &= 1-\sin^2A + 1-\sin^2B + 2\sinA\sinB\cosC \\ | ||
&= 2-(\sin^2A + \sin^2B - 2\sinA\sinB\cosC) | &= 2-(\sin^2A + \sin^2B - 2\sinA\sinB\cosC) | ||
\end{align*}</math> | \end{align*}</math> | ||
+ | |||
Now we can use the Law of Cosines to simplify this: | Now we can use the Law of Cosines to simplify this: | ||
+ | |||
<cmath>= 2-\sin^2C</cmath> | <cmath>= 2-\sin^2C</cmath> | ||
Therefore: <cmath>\sin C = \sqrt{\dfrac{1}{8}},\cos C = \sqrt{\dfrac{7}{8}}.</cmath> Similarly, <cmath>\sin A = \sqrt{\dfrac{4}{9}}\cos A = \sqrt{\dfrac{5}{9}}.</cmath> Note that the desired value is equivalent to <math>2-\sin^2B</math>, which is <math>2-\sin^2(A+C)</math>. All that remains is to use the sine addition formula and, after a few minor computations, we obtain a result of <math>\dfrac{111-4\sqrt{35}}{72}</math>. Thus, the answer is <math>111+4+35+72 = \boxed{222}</math>. | Therefore: <cmath>\sin C = \sqrt{\dfrac{1}{8}},\cos C = \sqrt{\dfrac{7}{8}}.</cmath> Similarly, <cmath>\sin A = \sqrt{\dfrac{4}{9}}\cos A = \sqrt{\dfrac{5}{9}}.</cmath> Note that the desired value is equivalent to <math>2-\sin^2B</math>, which is <math>2-\sin^2(A+C)</math>. All that remains is to use the sine addition formula and, after a few minor computations, we obtain a result of <math>\dfrac{111-4\sqrt{35}}{72}</math>. Thus, the answer is <math>111+4+35+72 = \boxed{222}</math>. |
Revision as of 13:42, 4 April 2013
\[ \begin{align*} \cos^2 A + \cos^2 B + 2 \sin A \sin B \cos C &= \frac{15}{8} \text{ and} \\ \cos^2 B + \cos^2 C + 2 \sin B \sin C \cos A &= \frac{14}{9} \end{align*} \] There are positive integers , , , and for which where and are relatively prime and is not divisible by the square of any prime. Find .
Solution
Let's draw the triangle. Since the problem only deals with angles, we can go ahead and set one of the sides to a convenient value. Let .
By the Law of Sines, we must have and .
Now let us analyze the given:
$\begin{align*} \cos^2A + \cos^2B + 2\sinA\sinB\cosC &= 1-\sin^2A + 1-\sin^2B + 2\sinA\sinB\cosC \\ &= 2-(\sin^2A + \sin^2B - 2\sinA\sinB\cosC) \end{align*}$ (Error compiling LaTeX. Unknown error_msg)
Now we can use the Law of Cosines to simplify this:
Therefore: Similarly, Note that the desired value is equivalent to , which is . All that remains is to use the sine addition formula and, after a few minor computations, we obtain a result of . Thus, the answer is .