Difference between revisions of "2010 USAJMO Problems/Problem 2"
(Created page with '==Problem== Let <math>n > 1</math> be an integer. Find, with proof, all sequences <math>x_1, x_2, \ldots, x_{n-1}</math> of positive integers with the following three properties:…') |
(→Proof) |
||
Line 52: | Line 52: | ||
So, by induction <math>x_1 + x_{n-1-m} = x_{n-m}</math> for all <math>m \in [1, n-2]</math>, | So, by induction <math>x_1 + x_{n-1-m} = x_{n-m}</math> for all <math>m \in [1, n-2]</math>, | ||
which completes the proof. | which completes the proof. | ||
+ | |||
+ | == See Also == | ||
+ | {{USAJMO newbox|year=2010|num-b=1|num-a=3}} | ||
+ | |||
+ | [[Category:Olympiad Number Theory Problems]] |
Revision as of 20:13, 28 March 2013
Contents
Problem
Let be an integer. Find, with proof, all sequences of positive integers with the following three properties:
- (a). ;
- (b). for all ;
- (c). given any two indices and (not necessarily distinct) for which , there is an index such that .
Solution
The sequence is .
Proof
We will prove that any sequence , that satisfies the given conditions, is an arithmetic progression with as both the first term and the increment. Once this is proved, condition (b) implies that . Therefore , and the sequence is just the even numbers from to . The sequence of successive even numbers clearly satisfies all three conditions, and we are done.
First a degenerate case. If , there is only one element , and condition (b) gives or . Conditions (a) and (c) are vacuously true.
Otherwise, for , we will prove by induction on that the difference for all , which makes all the differences , i.e. the sequence is an arithmetic progression with as the first term and increment as promised.
So first the case. With , exists and is less than by condition (a). Now since by condition (b) , we conclude that , and therefore by condition (c) for some . Now, since , and can only be . So .
Suppose we have shown that for all , . If we are done, otherwise , and by condition (c) for some . This is larger than , but smaller than by the inductive hypothesis. It then follows that , the only element of the sequence between and . This establishes the result for .
So, by induction for all , which completes the proof.
See Also
2010 USAJMO (Problems • Resources) | ||
Preceded by Problem 1 |
Followed by Problem 3 | |
1 • 2 • 3 • 4 • 5 • 6 | ||
All USAJMO Problems and Solutions |