Difference between revisions of "2013 AMC 10B Problems/Problem 23"
Turkeybob777 (talk | contribs) (→Solution) |
(→Solution) |
||
Line 8: | Line 8: | ||
Since <math>\angle{AFB}=\angle{ADB}=90</math>, quadrilateral <math>ABDF</math> is cyclic. It follows that <math>\angle{ADE}=\angle{ABF}</math>. In addition, since <math>\angle{AFB}=\angle{AED}=90</math>, triangles <math>ABF</math> and <math>ADE</math> are similar. It follows that <math>AF=(13)(\frac{4}{5}), BF=(13)(\frac{3}{5})</math>. By Ptolemy, we have <math>13DF+(5)(13)(\frac{4}{5})=(12)(13)(\frac{3}{5})</math>. Cancelling <math>13</math>, the rest is easy. We obtain <math>DF=\frac{16}{5}\implies{16+5=21}\implies{\boxed{\textbf{(B)} 21}</math> | Since <math>\angle{AFB}=\angle{ADB}=90</math>, quadrilateral <math>ABDF</math> is cyclic. It follows that <math>\angle{ADE}=\angle{ABF}</math>. In addition, since <math>\angle{AFB}=\angle{AED}=90</math>, triangles <math>ABF</math> and <math>ADE</math> are similar. It follows that <math>AF=(13)(\frac{4}{5}), BF=(13)(\frac{3}{5})</math>. By Ptolemy, we have <math>13DF+(5)(13)(\frac{4}{5})=(12)(13)(\frac{3}{5})</math>. Cancelling <math>13</math>, the rest is easy. We obtain <math>DF=\frac{16}{5}\implies{16+5=21}\implies{\boxed{\textbf{(B)} 21}</math> | ||
+ | == See also == | ||
+ | {{AMC10 box|year=2013|ab=B|num-b=22|num-a=24}} |
Revision as of 16:05, 27 March 2013
Problem
In triangle , , , and . Distinct points , , and lie on segments , , and , respectively, such that , , and . The length of segment can be written as , where and are relatively prime positive integers. What is ?
Solution
Since , quadrilateral is cyclic. It follows that . In addition, since , triangles and are similar. It follows that . By Ptolemy, we have . Cancelling , the rest is easy. We obtain $DF=\frac{16}{5}\implies{16+5=21}\implies{\boxed{\textbf{(B)} 21}$ (Error compiling LaTeX. Unknown error_msg)
See also
2013 AMC 10B (Problems • Answer Key • Resources) | ||
Preceded by Problem 22 |
Followed by Problem 24 | |
1 • 2 • 3 • 4 • 5 • 6 • 7 • 8 • 9 • 10 • 11 • 12 • 13 • 14 • 15 • 16 • 17 • 18 • 19 • 20 • 21 • 22 • 23 • 24 • 25 | ||
All AMC 10 Problems and Solutions |