Difference between revisions of "2000 AMC 12 Problems/Problem 17"
(→Solution) |
|||
Line 1: | Line 1: | ||
== Problem == | == Problem == | ||
− | + | A circle centered at <math>O</math> has radius <math>1</math> and contains the point <math>A</math>. The segment <math>AB</math> is tangent to the circle at <math>A</math> and <math>\angle AOB = \theta</math>. If point <math>C</math> lies on <math>\overline{OA}</math> and <math>\overline{BC}</math> bisects <math>\angle ABO</math>, then <math>OC =</math> | |
− | + | <asy> | |
+ | import olympiad; | ||
+ | unitsize(1cm); | ||
+ | defaultpen(fontsize(8pt)+linewidth(.8pt)); | ||
+ | labelmargin=0.2; | ||
+ | dotfactor=3; | ||
+ | pair O=(0,0); | ||
+ | pair A=(1,0); | ||
+ | pair B=(1,1.5); | ||
+ | pair D=bisectorpoint(A,B,O); | ||
+ | pair C=extension(B,D,O,A); | ||
+ | draw(Circle(O,1)); | ||
+ | draw(O--A--B--cycle); | ||
+ | draw(B--C); | ||
+ | label("$O$",O,SW); | ||
+ | dot(O); | ||
+ | label("$\theta$",(0.1,0.05),ENE); | ||
+ | dot(C); | ||
+ | label("$C$",C,S); | ||
+ | dot(A); | ||
+ | label("$A$",A,E); | ||
+ | dot(B); | ||
+ | label("$B$",B,E);</asy> | ||
<math>\text {(A)}\ \sec^2 \theta - \tan \theta \qquad \text {(B)}\ \frac 12 \qquad \text {(C)}\ \frac{\cos^2 \theta}{1 + \sin \theta}\qquad \text {(D)}\ \frac{1}{1+\sin\theta} \qquad \text {(E)}\ \frac{\sin \theta}{\cos^2 \theta}</math> | <math>\text {(A)}\ \sec^2 \theta - \tan \theta \qquad \text {(B)}\ \frac 12 \qquad \text {(C)}\ \frac{\cos^2 \theta}{1 + \sin \theta}\qquad \text {(D)}\ \frac{1}{1+\sin\theta} \qquad \text {(E)}\ \frac{\sin \theta}{\cos^2 \theta}</math> | ||
== Solution == | == Solution == | ||
− | Since <math>\overline{AB}</math> is tangent to the circle, <math>\triangle OAB</math> is a | + | Since <math>\overline{AB}</math> is tangent to the circle, <math>\triangle OAB</math> is a right triangle. This means that <math>OA = 1</math>, <math>BA = \tan \theta</math> and <math>OB = \sec \theta</math>. By the [[Angle Bisector Theorem]], <cmath> \frac{OB}{OC} = \frac{AB}{AC} \Longrightarrow AC \sec \theta = OC \tan \theta </cmath> We multiply both sides by <math>\cos \theta</math> to simplify the trigonometric functions, <cmath> AC=OC \sin \theta </cmath> Since <math>AC + OC = 1</math>, <math>1 - OC = OC \sin \theta \Longrightarrow</math> <math>OC = \dfrac{1}{1+\sin \theta}</math>. Therefore, the answer is <math>\boxed{\textbf{(D)} \dfrac{1}{1+\sin \theta}}</math>. |
== See also == | == See also == |
Revision as of 08:11, 24 March 2013
Problem
A circle centered at has radius and contains the point . The segment is tangent to the circle at and . If point lies on and bisects , then
Solution
Since is tangent to the circle, is a right triangle. This means that , and . By the Angle Bisector Theorem, We multiply both sides by to simplify the trigonometric functions, Since , . Therefore, the answer is .
See also
2000 AMC 12 (Problems • Answer Key • Resources) | |
Preceded by Problem 16 |
Followed by Problem 18 |
1 • 2 • 3 • 4 • 5 • 6 • 7 • 8 • 9 • 10 • 11 • 12 • 13 • 14 • 15 • 16 • 17 • 18 • 19 • 20 • 21 • 22 • 23 • 24 • 25 | |
All AMC 12 Problems and Solutions |