Difference between revisions of "2002 AIME I Problems/Problem 13"
(→Solution 2) |
(→Solution 2) |
||
Line 24: | Line 24: | ||
</center> | </center> | ||
Hence <math>\sin \angle AEC = \sqrt{1 - \cos^2 \angle AEC} = \frac{\sqrt{55}}{8}</math>. Because <math>\triangle AEF, BEF</math> have the same height and equal bases, they have the same area, and <math>[ABF] = 2[AEF] = 2 \cdot \frac 12 \cdot AE \cdot EF \sin \angle AEF = 12 \cdot \frac{16}{3} \cdot \frac{\sqrt{55}}{8} = 8\sqrt{55}</math>, and the answer is <math>8 + 55 = \boxed{063}</math>. | Hence <math>\sin \angle AEC = \sqrt{1 - \cos^2 \angle AEC} = \frac{\sqrt{55}}{8}</math>. Because <math>\triangle AEF, BEF</math> have the same height and equal bases, they have the same area, and <math>[ABF] = 2[AEF] = 2 \cdot \frac 12 \cdot AE \cdot EF \sin \angle AEF = 12 \cdot \frac{16}{3} \cdot \frac{\sqrt{55}}{8} = 8\sqrt{55}</math>, and the answer is <math>8 + 55 = \boxed{063}</math>. | ||
+ | |||
+ | == Solution 2 == | ||
== Solution 2 == | == Solution 2 == | ||
Line 37: | Line 39: | ||
<cmath>\begin{align*} | <cmath>\begin{align*} | ||
[APE] = \frac{27\sqrt{55}}{4} | [APE] = \frac{27\sqrt{55}}{4} | ||
− | |||
− | |||
− | |||
− | |||
− | |||
− | |||
\end{align*}</cmath> | \end{align*}</cmath> | ||
</center> | </center> | ||
Line 54: | Line 50: | ||
<center> | <center> | ||
<cmath>\begin{align*} | <cmath>\begin{align*} | ||
− | \frac{[ | + | \frac{[AFE]}{[APE]}=\frac{[AFE]}{(\frac{27\sqrt{55}}{4})}=\frac{PE}{EF}=\frac{(\frac{16}{3})}{9}=\frac{16}{27} |
\end{align*}</cmath> | \end{align*}</cmath> | ||
</center> | </center> | ||
Line 60: | Line 56: | ||
<center> | <center> | ||
<cmath>\begin{align*} | <cmath>\begin{align*} | ||
− | [ | + | [AFE] = 4\sqrt{55} |
\end{align*}</cmath> | \end{align*}</cmath> | ||
</center> | </center> | ||
Line 66: | Line 62: | ||
<center> | <center> | ||
<cmath>\begin{align*} | <cmath>\begin{align*} | ||
− | [AFB]=2[ | + | [AFB]=2[AFE]=8\sqrt{55} |
\end{align*}</cmath> | \end{align*}</cmath> | ||
</center> | </center> |
Revision as of 22:23, 7 March 2013
Problem
In triangle the medians and have lengths and , respectively, and . Extend to intersect the circumcircle of at . The area of triangle is , where and are positive integers and is not divisible by the square of any prime. Find .
Solution 1
Applying Stewart's Theorem to medians , we have:
Substituting the first equation into the second and simplification yields .
By the Power of a Point Theorem on , we get . The Law of Cosines on gives
Hence . Because have the same height and equal bases, they have the same area, and , and the answer is .
Solution 2
Solution 2
Let and intersect at . Since medians split one another in a 2:1 ratio, we have
This gives isosceles and thus an easy area calculation. After extending the altitude to and using the fact that it is also a median, we find
Using Power of a Point, we have
By Same Height Different Base,
Solving gives
and
Thus, our answer is .
-Solution by thecmd999
See also
2002 AIME I (Problems • Answer Key • Resources) | ||
Preceded by Problem 12 |
Followed by Problem 14 | |
1 • 2 • 3 • 4 • 5 • 6 • 7 • 8 • 9 • 10 • 11 • 12 • 13 • 14 • 15 | ||
All AIME Problems and Solutions |