Difference between revisions of "2013 AMC 12A Problems/Problem 4"
Line 1: | Line 1: | ||
+ | == Problem == | ||
+ | |||
+ | What is the value of <cmath>\frac{2^{2014}+2^{2012}}{2^{2014}-2^{2012}}?</cmath> | ||
+ | |||
+ | <math> \textbf{(A)}\ -1\qquad\textbf{(B)}\ 1\qquad\textbf{(C)}\ \frac{5}{3}\qquad\textbf{(D)}\ 2013\qquad\textbf{(E)}\ 2^{4024} </math> | ||
+ | |||
+ | ==Solution== | ||
+ | |||
+ | |||
<math>\frac{2^{2014}+2^{2012}}{2^{2014}-2^{2012}}</math> | <math>\frac{2^{2014}+2^{2012}}{2^{2014}-2^{2012}}</math> | ||
Line 8: | Line 17: | ||
<math>\frac{(2^2+1)}{(2^2-1)}=\frac{5}{3}</math>, which is <math>C</math> | <math>\frac{(2^2+1)}{(2^2-1)}=\frac{5}{3}</math>, which is <math>C</math> | ||
+ | |||
+ | == See also == | ||
+ | {{AMC12 box|year=2013|ab=A|num-b=3|num-a=5}} |
Revision as of 17:31, 22 February 2013
Problem
What is the value of
Solution
We can factor a out of the numerator and denominator to obtain
The cancels, so we get
, which is
See also
2013 AMC 12A (Problems • Answer Key • Resources) | |
Preceded by Problem 3 |
Followed by Problem 5 |
1 • 2 • 3 • 4 • 5 • 6 • 7 • 8 • 9 • 10 • 11 • 12 • 13 • 14 • 15 • 16 • 17 • 18 • 19 • 20 • 21 • 22 • 23 • 24 • 25 | |
All AMC 12 Problems and Solutions |