Difference between revisions of "2013 AMC 12A Problems/Problem 4"

Line 1: Line 1:
 +
== Problem ==
 +
 +
What is the value of <cmath>\frac{2^{2014}+2^{2012}}{2^{2014}-2^{2012}}?</cmath>
 +
 +
<math> \textbf{(A)}\ -1\qquad\textbf{(B)}\ 1\qquad\textbf{(C)}\ \frac{5}{3}\qquad\textbf{(D)}\ 2013\qquad\textbf{(E)}\ 2^{4024} </math>
 +
 +
==Solution==
 +
 +
 
<math>\frac{2^{2014}+2^{2012}}{2^{2014}-2^{2012}}</math>
 
<math>\frac{2^{2014}+2^{2012}}{2^{2014}-2^{2012}}</math>
  
Line 8: Line 17:
  
 
<math>\frac{(2^2+1)}{(2^2-1)}=\frac{5}{3}</math>, which is <math>C</math>
 
<math>\frac{(2^2+1)}{(2^2-1)}=\frac{5}{3}</math>, which is <math>C</math>
 +
 +
== See also ==
 +
{{AMC12 box|year=2013|ab=A|num-b=3|num-a=5}}

Revision as of 17:31, 22 February 2013

Problem

What is the value of \[\frac{2^{2014}+2^{2012}}{2^{2014}-2^{2012}}?\]

$\textbf{(A)}\ -1\qquad\textbf{(B)}\ 1\qquad\textbf{(C)}\ \frac{5}{3}\qquad\textbf{(D)}\ 2013\qquad\textbf{(E)}\ 2^{4024}$

Solution

$\frac{2^{2014}+2^{2012}}{2^{2014}-2^{2012}}$

We can factor a ${2^{2012}}$ out of the numerator and denominator to obtain

$\frac{2^{2012}*(2^2+1)}{2^{2012}*(2^2-1)}$

The ${2^{2012}}$ cancels, so we get

$\frac{(2^2+1)}{(2^2-1)}=\frac{5}{3}$, which is $C$

See also

2013 AMC 12A (ProblemsAnswer KeyResources)
Preceded by
Problem 3
Followed by
Problem 5
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25
All AMC 12 Problems and Solutions