Difference between revisions of "2013 AMC 12B Problems/Problem 24"
(Blanked the page) |
|||
Line 1: | Line 1: | ||
+ | ==Problem== | ||
+ | Let <math>ABC</math> be a triangle where <math>M</math> is the midpoint of <math>\overline{AC}</math>, and <math>\overline{CN}</math> is the angle bisector of <math>\angle{ACB}</math> with <math>N</math> on <math>\overline{AB}</math>. Let <math>X</math> be the intersection of the median <math>\overline{BM}</math> and the bisector <math>\overline{CN}</math>. In addition <math>\triangle BXN</math> is equilateral with <math>AC=2</math>. What is <math>BN^2</math>? | ||
+ | <math>\textbf{(A)}\ \frac{10-6\sqrt{2}}{7} \qquad \textbf{(B)}\ \frac{2}{9} \qquad \textbf{(C)}\ \frac{5\sqrt{2}-3\sqrt{3}}{8} \qquad \textbf{(D)}\ \frac{\sqrt{2}}{6} \qquad \textbf{(E)}\ \frac{3\sqrt{3}-4}{5}</math> | ||
+ | |||
+ | ==Solution== | ||
+ | |||
+ | == See also == | ||
+ | {{AMC12 box|year=2013|ab=B|num-b=23|num-a=25}} |
Revision as of 17:17, 22 February 2013
Problem
Let be a triangle where is the midpoint of , and is the angle bisector of with on . Let be the intersection of the median and the bisector . In addition is equilateral with . What is ?
Solution
See also
2013 AMC 12B (Problems • Answer Key • Resources) | |
Preceded by Problem 23 |
Followed by Problem 25 |
1 • 2 • 3 • 4 • 5 • 6 • 7 • 8 • 9 • 10 • 11 • 12 • 13 • 14 • 15 • 16 • 17 • 18 • 19 • 20 • 21 • 22 • 23 • 24 • 25 | |
All AMC 12 Problems and Solutions |