Difference between revisions of "2013 AMC 10B Problems/Problem 22"
(→Problem) |
|||
Line 4: | Line 4: | ||
<math> \textbf{(A)}\ 384 \qquad\textbf{(B)}\ 576 \qquad\textbf{(C)}\ 1152 \qquad\textbf{(D)}\ 1680 \qquad\textbf{(E)}\ 3456 </math> | <math> \textbf{(A)}\ 384 \qquad\textbf{(B)}\ 576 \qquad\textbf{(C)}\ 1152 \qquad\textbf{(D)}\ 1680 \qquad\textbf{(E)}\ 3456 </math> | ||
+ | |||
+ | <asy> | ||
+ | pair A,B,C,D,E,F,G,H,J; | ||
+ | A=(20,20(2+sqrt(2))); | ||
+ | B=(20(1+sqrt(2)),20(2+sqrt(2))); | ||
+ | C=(20(2+sqrt(2)),20(1+sqrt(2))); | ||
+ | D=(20(2+sqrt(2)),20); | ||
+ | E=(20(1+sqrt(2)),0); | ||
+ | F=(20,0); | ||
+ | G=(0,20); | ||
+ | H=(0,20(1+sqrt(2))); | ||
+ | J=(10(2+sqrt(2)),10(2+sqrt(2))); | ||
+ | draw(A--B); | ||
+ | draw(B--C); | ||
+ | draw(C--D); | ||
+ | draw(D--E); | ||
+ | draw(E--F); | ||
+ | draw(F--G); | ||
+ | draw(G--H); | ||
+ | draw(H--A); | ||
+ | dot(A); | ||
+ | dot(B); | ||
+ | dot(C); | ||
+ | dot(D); | ||
+ | dot(E); | ||
+ | dot(F); | ||
+ | dot(G); | ||
+ | dot(H); | ||
+ | dot(J); | ||
+ | label("A",A,NNW); | ||
+ | label("B",B,NNE); | ||
+ | label("C",C,ENE); | ||
+ | label("D",D,ESE); | ||
+ | label("E",E,SSE); | ||
+ | label("F",F,SSW); | ||
+ | label("G",G,WSW); | ||
+ | label("H",H,WNW); | ||
+ | label("J",J,SE); | ||
+ | </asy> | ||
==Solution== | ==Solution== |
Revision as of 17:18, 21 February 2013
Problem
The regular octagon has its center at . Each of the vertices and the center are to be associated with one of the digits through , with each digit used once, in such a way that the sums of the numbers on the lines , , , and are all equal. In how many ways can this be done?
Solution
First of all, note that must be , , or to preserve symmetry. We also notice that .
WLOG assume that . Thus the pairs of vertices must be and , and , and , and and . There are ways to assign these to the vertices. Furthermore, there are ways to switch them (i.e. do instead of ).
Thus, there are ways for each possible J value. There are possible J values that still preserve symmetry: