Difference between revisions of "2013 AMC 10A Problems/Problem 16"
Countingkg (talk | contribs) |
Countingkg (talk | contribs) m |
||
Line 28: | Line 28: | ||
We realize that because the diagram is symmetric over <math>x = 8</math>, the intersection of lines <math>AC</math> and <math>DE</math> should intersect at an x-coordinate of <math>8</math>. We know that the slope of <math>DE</math> is <math>\frac{5-1}{10-7} = \frac{4}{3}</math>. Thus, we can represent the line going through <math>E</math> and <math>D</math> as <math>y - 1=\frac{4}{3}(x - 7)</math>. Plugging in <math>x = 8</math>, we find that the y-coordinate of F is <math>\frac{7}{3}</math>. Thus, the height of <math>\triangle ADF</math> is <math>5 - \frac{7}{3} = \frac{8}{3}</math>. Using the formula for the area of a triangle, the area of <math>\triangle ADF</math> is <math>\frac{16}{3}</math>. | We realize that because the diagram is symmetric over <math>x = 8</math>, the intersection of lines <math>AC</math> and <math>DE</math> should intersect at an x-coordinate of <math>8</math>. We know that the slope of <math>DE</math> is <math>\frac{5-1}{10-7} = \frac{4}{3}</math>. Thus, we can represent the line going through <math>E</math> and <math>D</math> as <math>y - 1=\frac{4}{3}(x - 7)</math>. Plugging in <math>x = 8</math>, we find that the y-coordinate of F is <math>\frac{7}{3}</math>. Thus, the height of <math>\triangle ADF</math> is <math>5 - \frac{7}{3} = \frac{8}{3}</math>. Using the formula for the area of a triangle, the area of <math>\triangle ADF</math> is <math>\frac{16}{3}</math>. | ||
− | To get our final answer, we must subtract this from <math>16</math>. <math>[ABD] - [ADF] = 16 - \frac{16}{3} = \frac{32}{3} | + | To get our final answer, we must subtract this from <math>16</math>. <math>[ABD] - [ADF] = 16 - \frac{16}{3} = \boxed{\textbf{(C) }\frac{32}{3}}</math> |
==See Also== | ==See Also== | ||
{{AMC10 box|year=2013|ab=A|num-b=15|num-a=17}} | {{AMC10 box|year=2013|ab=A|num-b=15|num-a=17}} |
Revision as of 14:28, 8 February 2013
Problem
A triangle with vertices , , and is reflected about the line to create a second triangle. What is the area of the union of the two triangles?
Solution
Let be at , B be at , and be at . Reflecting over the line , we see that , (as the x-coordinate of B is 8), and .
We see that if we connect to , we get a line of length (between and ). The area of is equal to .
Now, let the point of intersection between and be . If we can just find the area of and subtract it from 16, we are done.
We realize that because the diagram is symmetric over , the intersection of lines and should intersect at an x-coordinate of . We know that the slope of is . Thus, we can represent the line going through and as . Plugging in , we find that the y-coordinate of F is . Thus, the height of is . Using the formula for the area of a triangle, the area of is .
To get our final answer, we must subtract this from .
See Also
2013 AMC 10A (Problems • Answer Key • Resources) | ||
Preceded by Problem 15 |
Followed by Problem 17 | |
1 • 2 • 3 • 4 • 5 • 6 • 7 • 8 • 9 • 10 • 11 • 12 • 13 • 14 • 15 • 16 • 17 • 18 • 19 • 20 • 21 • 22 • 23 • 24 • 25 | ||
All AMC 10 Problems and Solutions |