Difference between revisions of "2013 AMC 10A Problems/Problem 22"
Countingkg (talk | contribs) (Created page with "==Problem== Six spheres of radius <math>1</math> are positioned so that their centers are at the vertices of a regular hexagon of side length <math>2</math>. The six spheres are...") |
Countingkg (talk | contribs) |
||
Line 7: | Line 7: | ||
==Solution== | ==Solution== | ||
+ | |||
+ | ==See Also== | ||
+ | |||
+ | {{AMC10 box|year=2013|ab=A|num-b=21|num-a=23}} | ||
+ | {{AMC12 box|year=2013|ab=A|num-b=17|num-a=19}} |
Revision as of 21:14, 7 February 2013
Problem
Six spheres of radius are positioned so that their centers are at the vertices of a regular hexagon of side length . The six spheres are internally tangent to a larger sphere whose center is the center of the hexagon. An eighth sphere is externally tangent to the six smaller spheres and internally tangent to the larger sphere. What is the radius of this eighth sphere?
Solution
See Also
2013 AMC 10A (Problems • Answer Key • Resources) | ||
Preceded by Problem 21 |
Followed by Problem 23 | |
1 • 2 • 3 • 4 • 5 • 6 • 7 • 8 • 9 • 10 • 11 • 12 • 13 • 14 • 15 • 16 • 17 • 18 • 19 • 20 • 21 • 22 • 23 • 24 • 25 | ||
All AMC 10 Problems and Solutions |
2013 AMC 12A (Problems • Answer Key • Resources) | |
Preceded by Problem 17 |
Followed by Problem 19 |
1 • 2 • 3 • 4 • 5 • 6 • 7 • 8 • 9 • 10 • 11 • 12 • 13 • 14 • 15 • 16 • 17 • 18 • 19 • 20 • 21 • 22 • 23 • 24 • 25 | |
All AMC 12 Problems and Solutions |